Decomposition of gaseous ammonia on platinum surface at high temperature and pressure is an example of zero order reaction. It is of first order when concentration of \({\text{N}}{{\text{H}}_{\text{3}}}\) is low. \({\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\xrightarrow{{{\text{Pt}}\,{\text{catalyst}}}}{{\text{N}}_{\text{2}}}{\text{(g) + 3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\) \({\rm{Rate = k[N}}{{\rm{H}}_{\rm{3}}}{{\rm{]}}^{\rm{0}}}{\rm{ = k}}\)
CHXII04:CHEMICAL KINETICS
320117
\(2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})\) The rate law for the above reaction has been determined to be rate \(=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]\). What is the overall order of the reaction?
1 0
2 1
3 2
4 3
Explanation:
Overall order of reaction \(=\) Sum of the powers of reactants in the rate law \(=2\)
CHXII04:CHEMICAL KINETICS
320118
The rate constant of the reaction is \({\text{mo}}{{\text{l}}^{\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{L}}^{{\text{ - }}\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{s}}^{{\text{ - 1}}}}\). The order of the reaction is
1 \(\dfrac{1}{2}\)
2 \(\dfrac{5}{2}\)
3 \(-\dfrac{3}{2}\)
4 \(-\dfrac{1}{2}\)
Explanation:
\(k: m o l^{\dfrac{3}{2}} L^{\dfrac{-3}{2}} s^{-1}\) \(m o l^{1-n} L^{n-1} s^{-1}\) \(\therefore \quad 1-n=\dfrac{3}{2} \Rightarrow n=1-\dfrac{3}{2}=\dfrac{-1}{2}\)
Decomposition of gaseous ammonia on platinum surface at high temperature and pressure is an example of zero order reaction. It is of first order when concentration of \({\text{N}}{{\text{H}}_{\text{3}}}\) is low. \({\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\xrightarrow{{{\text{Pt}}\,{\text{catalyst}}}}{{\text{N}}_{\text{2}}}{\text{(g) + 3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\) \({\rm{Rate = k[N}}{{\rm{H}}_{\rm{3}}}{{\rm{]}}^{\rm{0}}}{\rm{ = k}}\)
CHXII04:CHEMICAL KINETICS
320117
\(2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})\) The rate law for the above reaction has been determined to be rate \(=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]\). What is the overall order of the reaction?
1 0
2 1
3 2
4 3
Explanation:
Overall order of reaction \(=\) Sum of the powers of reactants in the rate law \(=2\)
CHXII04:CHEMICAL KINETICS
320118
The rate constant of the reaction is \({\text{mo}}{{\text{l}}^{\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{L}}^{{\text{ - }}\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{s}}^{{\text{ - 1}}}}\). The order of the reaction is
1 \(\dfrac{1}{2}\)
2 \(\dfrac{5}{2}\)
3 \(-\dfrac{3}{2}\)
4 \(-\dfrac{1}{2}\)
Explanation:
\(k: m o l^{\dfrac{3}{2}} L^{\dfrac{-3}{2}} s^{-1}\) \(m o l^{1-n} L^{n-1} s^{-1}\) \(\therefore \quad 1-n=\dfrac{3}{2} \Rightarrow n=1-\dfrac{3}{2}=\dfrac{-1}{2}\)
Decomposition of gaseous ammonia on platinum surface at high temperature and pressure is an example of zero order reaction. It is of first order when concentration of \({\text{N}}{{\text{H}}_{\text{3}}}\) is low. \({\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\xrightarrow{{{\text{Pt}}\,{\text{catalyst}}}}{{\text{N}}_{\text{2}}}{\text{(g) + 3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\) \({\rm{Rate = k[N}}{{\rm{H}}_{\rm{3}}}{{\rm{]}}^{\rm{0}}}{\rm{ = k}}\)
CHXII04:CHEMICAL KINETICS
320117
\(2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})\) The rate law for the above reaction has been determined to be rate \(=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]\). What is the overall order of the reaction?
1 0
2 1
3 2
4 3
Explanation:
Overall order of reaction \(=\) Sum of the powers of reactants in the rate law \(=2\)
CHXII04:CHEMICAL KINETICS
320118
The rate constant of the reaction is \({\text{mo}}{{\text{l}}^{\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{L}}^{{\text{ - }}\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{s}}^{{\text{ - 1}}}}\). The order of the reaction is
1 \(\dfrac{1}{2}\)
2 \(\dfrac{5}{2}\)
3 \(-\dfrac{3}{2}\)
4 \(-\dfrac{1}{2}\)
Explanation:
\(k: m o l^{\dfrac{3}{2}} L^{\dfrac{-3}{2}} s^{-1}\) \(m o l^{1-n} L^{n-1} s^{-1}\) \(\therefore \quad 1-n=\dfrac{3}{2} \Rightarrow n=1-\dfrac{3}{2}=\dfrac{-1}{2}\)
Decomposition of gaseous ammonia on platinum surface at high temperature and pressure is an example of zero order reaction. It is of first order when concentration of \({\text{N}}{{\text{H}}_{\text{3}}}\) is low. \({\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\xrightarrow{{{\text{Pt}}\,{\text{catalyst}}}}{{\text{N}}_{\text{2}}}{\text{(g) + 3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\) \({\rm{Rate = k[N}}{{\rm{H}}_{\rm{3}}}{{\rm{]}}^{\rm{0}}}{\rm{ = k}}\)
CHXII04:CHEMICAL KINETICS
320117
\(2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})\) The rate law for the above reaction has been determined to be rate \(=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]\). What is the overall order of the reaction?
1 0
2 1
3 2
4 3
Explanation:
Overall order of reaction \(=\) Sum of the powers of reactants in the rate law \(=2\)
CHXII04:CHEMICAL KINETICS
320118
The rate constant of the reaction is \({\text{mo}}{{\text{l}}^{\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{L}}^{{\text{ - }}\frac{{\text{3}}}{{\text{2}}}}}\;{{\text{s}}^{{\text{ - 1}}}}\). The order of the reaction is
1 \(\dfrac{1}{2}\)
2 \(\dfrac{5}{2}\)
3 \(-\dfrac{3}{2}\)
4 \(-\dfrac{1}{2}\)
Explanation:
\(k: m o l^{\dfrac{3}{2}} L^{\dfrac{-3}{2}} s^{-1}\) \(m o l^{1-n} L^{n-1} s^{-1}\) \(\therefore \quad 1-n=\dfrac{3}{2} \Rightarrow n=1-\dfrac{3}{2}=\dfrac{-1}{2}\)