Kohlrausch Law of Independent migration of Ions and Its Applications
CHXII03:ELECTROCHEMISTRY

330342 Equivalent conductance at infinite dilution of \({\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{and}}\,\,{\rm{HCl}}\) aqueous solutions are \({{\rm{x}}_{\rm{1}}}{\rm{,}}\,\,{{\rm{x}}_{\rm{2}}}\,\,{\rm{and}}\,\,{{\rm{x}}_{\rm{3}}}\) respectively. Equivalent conductance of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) solution is

1 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
2 \({{\rm{x}}_{\rm{1}}}{\rm{ - }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
3 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - 2}}{{\rm{x}}_{\rm{3}}}\)
4 \({{\rm{x}}_{\rm{1}}}{\rm{ - 2}}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330343 Assertion :
If \({\lambda ^{\text{o}}}_{{\text{N}}{{\text{a}}^ + }}\) and \({\lambda ^{\text{o}}}_{{\text{C}}{{\text{l}}^ - }}\) are molar limiting conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation, \(\mathrm{A}^{\circ}{ }_{\mathrm{NaCl}}=\lambda^{\circ}{ }_{\mathrm{Na}^{+}}+\lambda^{\circ}{ }_{\mathrm{Cl}^{-}}\)
Reason :
This is according to Kohlrausch law of independent migration of ions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330344 The molar conductivities at infinite dilution for sodium acetate, HCl and NaCl are \({\rm{91S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}},\) \({\rm{425}}.{\rm{9S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and \({\rm{126}}.{\rm{4S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of acetic acid at infinite dilution is

1 \({\rm{390}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{530}}{\rm{.9}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{300}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{930}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330345 Conductivity of 0.00241 M acetic acid is \({\rm{7}}{\rm{.896 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for acetic acid is \({\rm{390}}{\rm{.5}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{0}}{\rm{.8\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{8}}{\rm{.4\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330342 Equivalent conductance at infinite dilution of \({\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{and}}\,\,{\rm{HCl}}\) aqueous solutions are \({{\rm{x}}_{\rm{1}}}{\rm{,}}\,\,{{\rm{x}}_{\rm{2}}}\,\,{\rm{and}}\,\,{{\rm{x}}_{\rm{3}}}\) respectively. Equivalent conductance of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) solution is

1 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
2 \({{\rm{x}}_{\rm{1}}}{\rm{ - }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
3 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - 2}}{{\rm{x}}_{\rm{3}}}\)
4 \({{\rm{x}}_{\rm{1}}}{\rm{ - 2}}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330343 Assertion :
If \({\lambda ^{\text{o}}}_{{\text{N}}{{\text{a}}^ + }}\) and \({\lambda ^{\text{o}}}_{{\text{C}}{{\text{l}}^ - }}\) are molar limiting conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation, \(\mathrm{A}^{\circ}{ }_{\mathrm{NaCl}}=\lambda^{\circ}{ }_{\mathrm{Na}^{+}}+\lambda^{\circ}{ }_{\mathrm{Cl}^{-}}\)
Reason :
This is according to Kohlrausch law of independent migration of ions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330344 The molar conductivities at infinite dilution for sodium acetate, HCl and NaCl are \({\rm{91S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}},\) \({\rm{425}}.{\rm{9S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and \({\rm{126}}.{\rm{4S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of acetic acid at infinite dilution is

1 \({\rm{390}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{530}}{\rm{.9}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{300}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{930}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330345 Conductivity of 0.00241 M acetic acid is \({\rm{7}}{\rm{.896 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for acetic acid is \({\rm{390}}{\rm{.5}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{0}}{\rm{.8\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{8}}{\rm{.4\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330342 Equivalent conductance at infinite dilution of \({\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{and}}\,\,{\rm{HCl}}\) aqueous solutions are \({{\rm{x}}_{\rm{1}}}{\rm{,}}\,\,{{\rm{x}}_{\rm{2}}}\,\,{\rm{and}}\,\,{{\rm{x}}_{\rm{3}}}\) respectively. Equivalent conductance of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) solution is

1 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
2 \({{\rm{x}}_{\rm{1}}}{\rm{ - }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
3 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - 2}}{{\rm{x}}_{\rm{3}}}\)
4 \({{\rm{x}}_{\rm{1}}}{\rm{ - 2}}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330343 Assertion :
If \({\lambda ^{\text{o}}}_{{\text{N}}{{\text{a}}^ + }}\) and \({\lambda ^{\text{o}}}_{{\text{C}}{{\text{l}}^ - }}\) are molar limiting conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation, \(\mathrm{A}^{\circ}{ }_{\mathrm{NaCl}}=\lambda^{\circ}{ }_{\mathrm{Na}^{+}}+\lambda^{\circ}{ }_{\mathrm{Cl}^{-}}\)
Reason :
This is according to Kohlrausch law of independent migration of ions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330344 The molar conductivities at infinite dilution for sodium acetate, HCl and NaCl are \({\rm{91S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}},\) \({\rm{425}}.{\rm{9S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and \({\rm{126}}.{\rm{4S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of acetic acid at infinite dilution is

1 \({\rm{390}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{530}}{\rm{.9}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{300}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{930}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330345 Conductivity of 0.00241 M acetic acid is \({\rm{7}}{\rm{.896 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for acetic acid is \({\rm{390}}{\rm{.5}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{0}}{\rm{.8\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{8}}{\rm{.4\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)
CHXII03:ELECTROCHEMISTRY

330342 Equivalent conductance at infinite dilution of \({\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{,}}\,\,{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\,\,{\rm{and}}\,\,{\rm{HCl}}\) aqueous solutions are \({{\rm{x}}_{\rm{1}}}{\rm{,}}\,\,{{\rm{x}}_{\rm{2}}}\,\,{\rm{and}}\,\,{{\rm{x}}_{\rm{3}}}\) respectively. Equivalent conductance of \({\rm{BaS}}{{\rm{O}}_{\rm{4}}}\) solution is

1 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
2 \({{\rm{x}}_{\rm{1}}}{\rm{ - }}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
3 \({{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ - 2}}{{\rm{x}}_{\rm{3}}}\)
4 \({{\rm{x}}_{\rm{1}}}{\rm{ - 2}}{{\rm{x}}_{\rm{2}}}{\rm{ - }}{{\rm{x}}_{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330343 Assertion :
If \({\lambda ^{\text{o}}}_{{\text{N}}{{\text{a}}^ + }}\) and \({\lambda ^{\text{o}}}_{{\text{C}}{{\text{l}}^ - }}\) are molar limiting conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation, \(\mathrm{A}^{\circ}{ }_{\mathrm{NaCl}}=\lambda^{\circ}{ }_{\mathrm{Na}^{+}}+\lambda^{\circ}{ }_{\mathrm{Cl}^{-}}\)
Reason :
This is according to Kohlrausch law of independent migration of ions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330344 The molar conductivities at infinite dilution for sodium acetate, HCl and NaCl are \({\rm{91S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}},\) \({\rm{425}}.{\rm{9S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) and \({\rm{126}}.{\rm{4S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively. The molar conductivity of acetic acid at infinite dilution is

1 \({\rm{390}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{530}}{\rm{.9}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{300}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{930}}{\rm{.5}}\,{\rm{S}}{\mkern 1mu} {\mkern 1mu} {\rm{c}}{{\rm{m}}^{\rm{2}}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330345 Conductivity of 0.00241 M acetic acid is \({\rm{7}}{\rm{.896 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\mkern 1mu} {\mkern 1mu} {\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{{\rm{ - 1}}}}\). Calculate its degree of dissociation if \({\rm{\Lambda }}_{\rm{m}}^{\rm{o}}\) for acetic acid is \({\rm{390}}{\rm{.5}}\,\,{\rm{S}}\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)

1 \({\rm{0}}{\rm{.8\% }}\)
2 \({\rm{10\% }}\)
3 \({\rm{8}}{\rm{.4\% }}\)
4 \({\rm{6}}{\rm{.4\% }}\)