Electrochemical Cells or Galvanic Cells
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330086 A standard hydrogen electrode has a zero potential because

1 Hydrogen can be most easily oxidised
2 The electrode potential is assumed to be zero
3 Hydrogen has only one electron
4 Hydrogen is the lightest element
CHXII03:ELECTROCHEMISTRY

330087 Deduce from the following \(\mathrm{E}^{\circ}\) values of half cells, what combination of two half cells would result in a cell with the largest potential?
I. \(\mathrm{A} \rightarrow \mathrm{A}^{+}+\mathrm{e} ; \mathrm{E}^{\circ}=-0.24 \mathrm{~V}\)
II. \(\mathrm{B}^{+} \rightarrow \mathrm{B}+\mathrm{e} ; \mathrm{E}^{\circ}=-2.1 \mathrm{~V}\)
III. \(\mathrm{C} \rightarrow \mathrm{C}^{2+}+2 \mathrm{e}^{-} ; \mathrm{E}^{0}=-0.38 \mathrm{~V}\)
IV. \(\mathrm{D}^{2-} \rightarrow \mathrm{D}^{-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.59 \mathrm{~V}\)

1 I and IV
2 II and III
3 III and IV
4 I and II
CHXII03:ELECTROCHEMISTRY

330088 For the cell reaction, \(2{\text{C}}{{\text{e}}^{4 + }} + {\text{Co}} \to 2{\text{C}}{{\text{e}}^{3 + }}{\text{C}}{{\text{o}}^{2 + }};\,\,{\text{E}}{^\circ _{{\text{cell}}}}{\text{is}}\,\,1.89\,{\text{V}}.\) if \({{\text{E}}_{{\text{C}}{{\text{o}}^{2 + }}/{\text{Co}}}}{\mkern 1mu} {\mkern 1mu} \) is \({\mkern 1mu} - 0.28{\text{V}},\) What is the value of \({\text{E}}{^\circ _{{\text{C}}{{\text{e}}^{{\text{4 + }}}}{\text{/}}\,\,{\text{C}}{{\text{e}}^{{\text{3 + }}}}}}\)?

1 \(0.28 \mathrm{~V}\)
2 \(1.61 \mathrm{~V}\)
3 \(2.17 \mathrm{~V}\)
4 \(5.29 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

330089 Which cell will measure standard electrode potential of copper electrode?

1 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{0}}.{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
2 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{2M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
3 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
4 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{0}}.{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
CHXII03:ELECTROCHEMISTRY

330086 A standard hydrogen electrode has a zero potential because

1 Hydrogen can be most easily oxidised
2 The electrode potential is assumed to be zero
3 Hydrogen has only one electron
4 Hydrogen is the lightest element
CHXII03:ELECTROCHEMISTRY

330087 Deduce from the following \(\mathrm{E}^{\circ}\) values of half cells, what combination of two half cells would result in a cell with the largest potential?
I. \(\mathrm{A} \rightarrow \mathrm{A}^{+}+\mathrm{e} ; \mathrm{E}^{\circ}=-0.24 \mathrm{~V}\)
II. \(\mathrm{B}^{+} \rightarrow \mathrm{B}+\mathrm{e} ; \mathrm{E}^{\circ}=-2.1 \mathrm{~V}\)
III. \(\mathrm{C} \rightarrow \mathrm{C}^{2+}+2 \mathrm{e}^{-} ; \mathrm{E}^{0}=-0.38 \mathrm{~V}\)
IV. \(\mathrm{D}^{2-} \rightarrow \mathrm{D}^{-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.59 \mathrm{~V}\)

1 I and IV
2 II and III
3 III and IV
4 I and II
CHXII03:ELECTROCHEMISTRY

330088 For the cell reaction, \(2{\text{C}}{{\text{e}}^{4 + }} + {\text{Co}} \to 2{\text{C}}{{\text{e}}^{3 + }}{\text{C}}{{\text{o}}^{2 + }};\,\,{\text{E}}{^\circ _{{\text{cell}}}}{\text{is}}\,\,1.89\,{\text{V}}.\) if \({{\text{E}}_{{\text{C}}{{\text{o}}^{2 + }}/{\text{Co}}}}{\mkern 1mu} {\mkern 1mu} \) is \({\mkern 1mu} - 0.28{\text{V}},\) What is the value of \({\text{E}}{^\circ _{{\text{C}}{{\text{e}}^{{\text{4 + }}}}{\text{/}}\,\,{\text{C}}{{\text{e}}^{{\text{3 + }}}}}}\)?

1 \(0.28 \mathrm{~V}\)
2 \(1.61 \mathrm{~V}\)
3 \(2.17 \mathrm{~V}\)
4 \(5.29 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

330089 Which cell will measure standard electrode potential of copper electrode?

1 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{0}}.{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
2 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{2M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
3 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
4 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{0}}.{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
CHXII03:ELECTROCHEMISTRY

330086 A standard hydrogen electrode has a zero potential because

1 Hydrogen can be most easily oxidised
2 The electrode potential is assumed to be zero
3 Hydrogen has only one electron
4 Hydrogen is the lightest element
CHXII03:ELECTROCHEMISTRY

330087 Deduce from the following \(\mathrm{E}^{\circ}\) values of half cells, what combination of two half cells would result in a cell with the largest potential?
I. \(\mathrm{A} \rightarrow \mathrm{A}^{+}+\mathrm{e} ; \mathrm{E}^{\circ}=-0.24 \mathrm{~V}\)
II. \(\mathrm{B}^{+} \rightarrow \mathrm{B}+\mathrm{e} ; \mathrm{E}^{\circ}=-2.1 \mathrm{~V}\)
III. \(\mathrm{C} \rightarrow \mathrm{C}^{2+}+2 \mathrm{e}^{-} ; \mathrm{E}^{0}=-0.38 \mathrm{~V}\)
IV. \(\mathrm{D}^{2-} \rightarrow \mathrm{D}^{-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.59 \mathrm{~V}\)

1 I and IV
2 II and III
3 III and IV
4 I and II
CHXII03:ELECTROCHEMISTRY

330088 For the cell reaction, \(2{\text{C}}{{\text{e}}^{4 + }} + {\text{Co}} \to 2{\text{C}}{{\text{e}}^{3 + }}{\text{C}}{{\text{o}}^{2 + }};\,\,{\text{E}}{^\circ _{{\text{cell}}}}{\text{is}}\,\,1.89\,{\text{V}}.\) if \({{\text{E}}_{{\text{C}}{{\text{o}}^{2 + }}/{\text{Co}}}}{\mkern 1mu} {\mkern 1mu} \) is \({\mkern 1mu} - 0.28{\text{V}},\) What is the value of \({\text{E}}{^\circ _{{\text{C}}{{\text{e}}^{{\text{4 + }}}}{\text{/}}\,\,{\text{C}}{{\text{e}}^{{\text{3 + }}}}}}\)?

1 \(0.28 \mathrm{~V}\)
2 \(1.61 \mathrm{~V}\)
3 \(2.17 \mathrm{~V}\)
4 \(5.29 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

330089 Which cell will measure standard electrode potential of copper electrode?

1 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{0}}.{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
2 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{2M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
3 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
4 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{0}}.{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII03:ELECTROCHEMISTRY

330086 A standard hydrogen electrode has a zero potential because

1 Hydrogen can be most easily oxidised
2 The electrode potential is assumed to be zero
3 Hydrogen has only one electron
4 Hydrogen is the lightest element
CHXII03:ELECTROCHEMISTRY

330087 Deduce from the following \(\mathrm{E}^{\circ}\) values of half cells, what combination of two half cells would result in a cell with the largest potential?
I. \(\mathrm{A} \rightarrow \mathrm{A}^{+}+\mathrm{e} ; \mathrm{E}^{\circ}=-0.24 \mathrm{~V}\)
II. \(\mathrm{B}^{+} \rightarrow \mathrm{B}+\mathrm{e} ; \mathrm{E}^{\circ}=-2.1 \mathrm{~V}\)
III. \(\mathrm{C} \rightarrow \mathrm{C}^{2+}+2 \mathrm{e}^{-} ; \mathrm{E}^{0}=-0.38 \mathrm{~V}\)
IV. \(\mathrm{D}^{2-} \rightarrow \mathrm{D}^{-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.59 \mathrm{~V}\)

1 I and IV
2 II and III
3 III and IV
4 I and II
CHXII03:ELECTROCHEMISTRY

330088 For the cell reaction, \(2{\text{C}}{{\text{e}}^{4 + }} + {\text{Co}} \to 2{\text{C}}{{\text{e}}^{3 + }}{\text{C}}{{\text{o}}^{2 + }};\,\,{\text{E}}{^\circ _{{\text{cell}}}}{\text{is}}\,\,1.89\,{\text{V}}.\) if \({{\text{E}}_{{\text{C}}{{\text{o}}^{2 + }}/{\text{Co}}}}{\mkern 1mu} {\mkern 1mu} \) is \({\mkern 1mu} - 0.28{\text{V}},\) What is the value of \({\text{E}}{^\circ _{{\text{C}}{{\text{e}}^{{\text{4 + }}}}{\text{/}}\,\,{\text{C}}{{\text{e}}^{{\text{3 + }}}}}}\)?

1 \(0.28 \mathrm{~V}\)
2 \(1.61 \mathrm{~V}\)
3 \(2.17 \mathrm{~V}\)
4 \(5.29 \mathrm{~V}\)
CHXII03:ELECTROCHEMISTRY

330089 Which cell will measure standard electrode potential of copper electrode?

1 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{0}}.{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
2 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{2M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
3 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]
4 \[\begin{array}{l}
\left. {{\rm{Pt}}\left( {\rm{s}} \right)} \right \vert \left. {{{\rm{H}}_{\rm{2}}}\left( {{\rm{g}},{\rm{1}}{\mkern 1mu} {\mkern 1mu} {\rm{bar}}} \right)} \right \vert \left. {{{\rm{H}}^{\rm{ + }}}\left( {{\rm{aq}}.,{\rm{0}}.{\rm{1M}}} \right)} \right\vert \\
\left. {{\rm{C}}{{\rm{u}}^{{\rm{2 + }}}}\left( {{\rm{aq}}.,{\rm{1M}}} \right)} \right \vert {\rm{Cu}}
\end{array}\]