319496
\({{\rm{p}}_{{\rm{total}}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ = p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}\left( {{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ - p}}_{\rm{1}}^{\rm{o}}} \right){{\rm{x}}_{\rm{2}}}\)
Following conculsions can be derived from the above equation.
I. Total vapour pressure of the solution is related to the mole fraction of any one component.
II. Total vapour pressure of the solution varies exponentially with the mole fraction of component 2.
III. Depending on the vapour pressure of pure components 1 and 2, total vapour pressure over the solution decreases or increases with the increase of the mole fraction of component 1.
Select the correct conclusions derived from the given equation.
319496
\({{\rm{p}}_{{\rm{total}}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ = p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}\left( {{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ - p}}_{\rm{1}}^{\rm{o}}} \right){{\rm{x}}_{\rm{2}}}\)
Following conculsions can be derived from the above equation.
I. Total vapour pressure of the solution is related to the mole fraction of any one component.
II. Total vapour pressure of the solution varies exponentially with the mole fraction of component 2.
III. Depending on the vapour pressure of pure components 1 and 2, total vapour pressure over the solution decreases or increases with the increase of the mole fraction of component 1.
Select the correct conclusions derived from the given equation.
319496
\({{\rm{p}}_{{\rm{total}}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ = p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}\left( {{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ - p}}_{\rm{1}}^{\rm{o}}} \right){{\rm{x}}_{\rm{2}}}\)
Following conculsions can be derived from the above equation.
I. Total vapour pressure of the solution is related to the mole fraction of any one component.
II. Total vapour pressure of the solution varies exponentially with the mole fraction of component 2.
III. Depending on the vapour pressure of pure components 1 and 2, total vapour pressure over the solution decreases or increases with the increase of the mole fraction of component 1.
Select the correct conclusions derived from the given equation.
319496
\({{\rm{p}}_{{\rm{total}}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ = p}}_{\rm{1}}^{\rm{o}}{\rm{ + }}\left( {{\rm{p}}_{\rm{2}}^{\rm{o}}{\rm{ - p}}_{\rm{1}}^{\rm{o}}} \right){{\rm{x}}_{\rm{2}}}\)
Following conculsions can be derived from the above equation.
I. Total vapour pressure of the solution is related to the mole fraction of any one component.
II. Total vapour pressure of the solution varies exponentially with the mole fraction of component 2.
III. Depending on the vapour pressure of pure components 1 and 2, total vapour pressure over the solution decreases or increases with the increase of the mole fraction of component 1.
Select the correct conclusions derived from the given equation.