Abnormal Molar Masses and Van't Hoff Factor
CHXII02:SOLUTIONS

319016 The boiling point of a solution containing 0.61 g of benzoic acid in the 50 g of carbon disulphide assuming 84% dimerisation of the acid, is (The boiling point and \({{\rm{K}}_{\rm{b}}}\,\,{\rm{of}}\,\,{\rm{C}}{{\rm{S}}_{\rm{2}}}\,\,{\rm{are}}\,\,{\rm{46}}{\rm{.2^\circ C}}\,\,{\rm{and}}\,\,{\rm{2}}{\rm{.3}}\,{\rm{K}}\,\,{\rm{kg}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively)

1 \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{40}}{\rm{.2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{5}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{46}}{\rm{.3}}{{\rm{3}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319017 If \(\alpha \) is the degree of dissociation of \({\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\), the Van’t Hoff factor (i) used for calculating the molecular mass is

1 \({\rm{1 + \alpha }}\)
2 \({\rm{1 - \alpha }}\)
3 \({\rm{1 + 2\alpha }}\)
4 \({\rm{1 - 2\alpha }}\)
CHXII02:SOLUTIONS

319018 Match the columns.
supporting img

1 A - R, B - Q, C - S, D - P
2 A - R, B - S, C - P, D - Q
3 A - P, B - Q, C - R, D - S
4 A - S, B - R, C - Q, D - P
CHXII02:SOLUTIONS

319019 The van’t Hoff factor 'i' for the compound,
\(\left[ {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{2}}}{{\left( {{\rm{CN}}} \right)}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right]{\rm{N}}{{\rm{O}}_{\rm{3}}}{\rm{.2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\) is

1 2
2 3
3 4
4 5
CHXII02:SOLUTIONS

319016 The boiling point of a solution containing 0.61 g of benzoic acid in the 50 g of carbon disulphide assuming 84% dimerisation of the acid, is (The boiling point and \({{\rm{K}}_{\rm{b}}}\,\,{\rm{of}}\,\,{\rm{C}}{{\rm{S}}_{\rm{2}}}\,\,{\rm{are}}\,\,{\rm{46}}{\rm{.2^\circ C}}\,\,{\rm{and}}\,\,{\rm{2}}{\rm{.3}}\,{\rm{K}}\,\,{\rm{kg}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively)

1 \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{40}}{\rm{.2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{5}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{46}}{\rm{.3}}{{\rm{3}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319017 If \(\alpha \) is the degree of dissociation of \({\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\), the Van’t Hoff factor (i) used for calculating the molecular mass is

1 \({\rm{1 + \alpha }}\)
2 \({\rm{1 - \alpha }}\)
3 \({\rm{1 + 2\alpha }}\)
4 \({\rm{1 - 2\alpha }}\)
CHXII02:SOLUTIONS

319018 Match the columns.
supporting img

1 A - R, B - Q, C - S, D - P
2 A - R, B - S, C - P, D - Q
3 A - P, B - Q, C - R, D - S
4 A - S, B - R, C - Q, D - P
CHXII02:SOLUTIONS

319019 The van’t Hoff factor 'i' for the compound,
\(\left[ {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{2}}}{{\left( {{\rm{CN}}} \right)}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right]{\rm{N}}{{\rm{O}}_{\rm{3}}}{\rm{.2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\) is

1 2
2 3
3 4
4 5
CHXII02:SOLUTIONS

319016 The boiling point of a solution containing 0.61 g of benzoic acid in the 50 g of carbon disulphide assuming 84% dimerisation of the acid, is (The boiling point and \({{\rm{K}}_{\rm{b}}}\,\,{\rm{of}}\,\,{\rm{C}}{{\rm{S}}_{\rm{2}}}\,\,{\rm{are}}\,\,{\rm{46}}{\rm{.2^\circ C}}\,\,{\rm{and}}\,\,{\rm{2}}{\rm{.3}}\,{\rm{K}}\,\,{\rm{kg}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively)

1 \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{40}}{\rm{.2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{5}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{46}}{\rm{.3}}{{\rm{3}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319017 If \(\alpha \) is the degree of dissociation of \({\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\), the Van’t Hoff factor (i) used for calculating the molecular mass is

1 \({\rm{1 + \alpha }}\)
2 \({\rm{1 - \alpha }}\)
3 \({\rm{1 + 2\alpha }}\)
4 \({\rm{1 - 2\alpha }}\)
CHXII02:SOLUTIONS

319018 Match the columns.
supporting img

1 A - R, B - Q, C - S, D - P
2 A - R, B - S, C - P, D - Q
3 A - P, B - Q, C - R, D - S
4 A - S, B - R, C - Q, D - P
CHXII02:SOLUTIONS

319019 The van’t Hoff factor 'i' for the compound,
\(\left[ {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{2}}}{{\left( {{\rm{CN}}} \right)}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right]{\rm{N}}{{\rm{O}}_{\rm{3}}}{\rm{.2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\) is

1 2
2 3
3 4
4 5
CHXII02:SOLUTIONS

319016 The boiling point of a solution containing 0.61 g of benzoic acid in the 50 g of carbon disulphide assuming 84% dimerisation of the acid, is (The boiling point and \({{\rm{K}}_{\rm{b}}}\,\,{\rm{of}}\,\,{\rm{C}}{{\rm{S}}_{\rm{2}}}\,\,{\rm{are}}\,\,{\rm{46}}{\rm{.2^\circ C}}\,\,{\rm{and}}\,\,{\rm{2}}{\rm{.3}}\,{\rm{K}}\,\,{\rm{kg}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\) respectively)

1 \({\rm{2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{40}}{\rm{.2}}{{\rm{5}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{5}}{{\rm{0}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{46}}{\rm{.3}}{{\rm{3}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319017 If \(\alpha \) is the degree of dissociation of \({\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\), the Van’t Hoff factor (i) used for calculating the molecular mass is

1 \({\rm{1 + \alpha }}\)
2 \({\rm{1 - \alpha }}\)
3 \({\rm{1 + 2\alpha }}\)
4 \({\rm{1 - 2\alpha }}\)
CHXII02:SOLUTIONS

319018 Match the columns.
supporting img

1 A - R, B - Q, C - S, D - P
2 A - R, B - S, C - P, D - Q
3 A - P, B - Q, C - R, D - S
4 A - S, B - R, C - Q, D - P
CHXII02:SOLUTIONS

319019 The van’t Hoff factor 'i' for the compound,
\(\left[ {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{2}}}{{\left( {{\rm{CN}}} \right)}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}} \right]{\rm{N}}{{\rm{O}}_{\rm{3}}}{\rm{.2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\) is

1 2
2 3
3 4
4 5