318673
A metallic element crystallises in simple cubic lattice. If edge length of the unit cell is \({\rm{3}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \), with density \(8 \mathrm{~g} / \mathrm{cc}\). What is the number of unit cells in \(100 \mathrm{~g}\) of the metal?
\((\) Molar mass of metal \(=108 \mathrm{~g} / \mathrm{mol})\)
318673
A metallic element crystallises in simple cubic lattice. If edge length of the unit cell is \({\rm{3}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \), with density \(8 \mathrm{~g} / \mathrm{cc}\). What is the number of unit cells in \(100 \mathrm{~g}\) of the metal?
\((\) Molar mass of metal \(=108 \mathrm{~g} / \mathrm{mol})\)
318673
A metallic element crystallises in simple cubic lattice. If edge length of the unit cell is \({\rm{3}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \), with density \(8 \mathrm{~g} / \mathrm{cc}\). What is the number of unit cells in \(100 \mathrm{~g}\) of the metal?
\((\) Molar mass of metal \(=108 \mathrm{~g} / \mathrm{mol})\)
318673
A metallic element crystallises in simple cubic lattice. If edge length of the unit cell is \({\rm{3}}\mathop {\rm{A}}\limits^{\rm{^\circ }} \), with density \(8 \mathrm{~g} / \mathrm{cc}\). What is the number of unit cells in \(100 \mathrm{~g}\) of the metal?
\((\) Molar mass of metal \(=108 \mathrm{~g} / \mathrm{mol})\)