Solubility Equilibria of Sparingly Soluble Salts
CHXI07:EQUILIBRIUM

314972 The solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is \(\sqrt{3}\). The solubility product of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is

1 3
2 27
3 \(\sqrt{3}\)
4 \(12 \sqrt{3}\)
CHXI07:EQUILIBRIUM

314931 How many grams of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) will dissolve in \(1 \mathrm{~L}\) of saturated solution? \({{\rm{K}}_{{\rm{SP}}}}\) of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is \({\text{2}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ }}{{\text{M}}^{\text{2}}}\) and its molecular weight is \({\text{128}}\).

1 \(6.4 \times 10^{-3} \mathrm{~g}\)
2 \(6.4 \times 10^{-4} \mathrm{~g}\)
3 \(12.8 \times 10^{-3} \mathrm{~g}\)
4 \(12.8 \times 10^{-4} \mathrm{~g}\)
CHXI07:EQUILIBRIUM

314932 The solubility product of \(\mathrm{AgCl}\) is \(4.0 \times 10^{-10}\) at \(298 \mathrm{~K}\). The solubility of \({\rm{AgCl}}\,{\rm{in}}\,{\rm{0}}{\rm{.04}}\,{\rm{M}}\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\) will be

1 \(2.0 \times 10^{-5} \mathrm{M}\)
2 \(1.0 \times 10^{-4} \mathrm{M}\)
3 \(5.0 \times 10^{-9} \mathrm{M}\)
4 \(2.2 \times 10^{-4} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314933 The solubility of anhydrous \(\mathrm{AlCl}_{3}\) and hydrous \(\mathrm{AlCl}_{3}\) in diethyl ether are \({{\text{S}}_{\text{1}}}\) and \({{\text{S}}_{\text{2}}}\), respectively. Then

1 \({{\rm{S}}_{\rm{1}}}{\rm{ = }}{{\rm{S}}_{\rm{2}}}\)
2 \({{\rm{S}}_{\rm{1}}}{\rm{ > }}{{\rm{S}}_{\rm{2}}}\)
3 \({{\rm{S}}_{\rm{1}}}{\rm{ < }}{{\rm{S}}_{\rm{2}}}\)
4 Can't be predicted
CHXI07:EQUILIBRIUM

314934 The solubility product of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is \(32 \times 10^{-12}\). What is the concentration of \(\mathrm{CrO}_{4}^{2-}\) ions in that solution?

1 \(2 \times 10^{-4} \mathrm{M}\)
2 \(16 \times 10^{-4} \mathrm{M}\)
3 \(8 \times 10^{-4} \mathrm{M}\)
4 \(8 \times 10^{-8} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314972 The solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is \(\sqrt{3}\). The solubility product of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is

1 3
2 27
3 \(\sqrt{3}\)
4 \(12 \sqrt{3}\)
CHXI07:EQUILIBRIUM

314931 How many grams of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) will dissolve in \(1 \mathrm{~L}\) of saturated solution? \({{\rm{K}}_{{\rm{SP}}}}\) of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is \({\text{2}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ }}{{\text{M}}^{\text{2}}}\) and its molecular weight is \({\text{128}}\).

1 \(6.4 \times 10^{-3} \mathrm{~g}\)
2 \(6.4 \times 10^{-4} \mathrm{~g}\)
3 \(12.8 \times 10^{-3} \mathrm{~g}\)
4 \(12.8 \times 10^{-4} \mathrm{~g}\)
CHXI07:EQUILIBRIUM

314932 The solubility product of \(\mathrm{AgCl}\) is \(4.0 \times 10^{-10}\) at \(298 \mathrm{~K}\). The solubility of \({\rm{AgCl}}\,{\rm{in}}\,{\rm{0}}{\rm{.04}}\,{\rm{M}}\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\) will be

1 \(2.0 \times 10^{-5} \mathrm{M}\)
2 \(1.0 \times 10^{-4} \mathrm{M}\)
3 \(5.0 \times 10^{-9} \mathrm{M}\)
4 \(2.2 \times 10^{-4} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314933 The solubility of anhydrous \(\mathrm{AlCl}_{3}\) and hydrous \(\mathrm{AlCl}_{3}\) in diethyl ether are \({{\text{S}}_{\text{1}}}\) and \({{\text{S}}_{\text{2}}}\), respectively. Then

1 \({{\rm{S}}_{\rm{1}}}{\rm{ = }}{{\rm{S}}_{\rm{2}}}\)
2 \({{\rm{S}}_{\rm{1}}}{\rm{ > }}{{\rm{S}}_{\rm{2}}}\)
3 \({{\rm{S}}_{\rm{1}}}{\rm{ < }}{{\rm{S}}_{\rm{2}}}\)
4 Can't be predicted
CHXI07:EQUILIBRIUM

314934 The solubility product of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is \(32 \times 10^{-12}\). What is the concentration of \(\mathrm{CrO}_{4}^{2-}\) ions in that solution?

1 \(2 \times 10^{-4} \mathrm{M}\)
2 \(16 \times 10^{-4} \mathrm{M}\)
3 \(8 \times 10^{-4} \mathrm{M}\)
4 \(8 \times 10^{-8} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314972 The solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is \(\sqrt{3}\). The solubility product of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is

1 3
2 27
3 \(\sqrt{3}\)
4 \(12 \sqrt{3}\)
CHXI07:EQUILIBRIUM

314931 How many grams of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) will dissolve in \(1 \mathrm{~L}\) of saturated solution? \({{\rm{K}}_{{\rm{SP}}}}\) of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is \({\text{2}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ }}{{\text{M}}^{\text{2}}}\) and its molecular weight is \({\text{128}}\).

1 \(6.4 \times 10^{-3} \mathrm{~g}\)
2 \(6.4 \times 10^{-4} \mathrm{~g}\)
3 \(12.8 \times 10^{-3} \mathrm{~g}\)
4 \(12.8 \times 10^{-4} \mathrm{~g}\)
CHXI07:EQUILIBRIUM

314932 The solubility product of \(\mathrm{AgCl}\) is \(4.0 \times 10^{-10}\) at \(298 \mathrm{~K}\). The solubility of \({\rm{AgCl}}\,{\rm{in}}\,{\rm{0}}{\rm{.04}}\,{\rm{M}}\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\) will be

1 \(2.0 \times 10^{-5} \mathrm{M}\)
2 \(1.0 \times 10^{-4} \mathrm{M}\)
3 \(5.0 \times 10^{-9} \mathrm{M}\)
4 \(2.2 \times 10^{-4} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314933 The solubility of anhydrous \(\mathrm{AlCl}_{3}\) and hydrous \(\mathrm{AlCl}_{3}\) in diethyl ether are \({{\text{S}}_{\text{1}}}\) and \({{\text{S}}_{\text{2}}}\), respectively. Then

1 \({{\rm{S}}_{\rm{1}}}{\rm{ = }}{{\rm{S}}_{\rm{2}}}\)
2 \({{\rm{S}}_{\rm{1}}}{\rm{ > }}{{\rm{S}}_{\rm{2}}}\)
3 \({{\rm{S}}_{\rm{1}}}{\rm{ < }}{{\rm{S}}_{\rm{2}}}\)
4 Can't be predicted
CHXI07:EQUILIBRIUM

314934 The solubility product of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is \(32 \times 10^{-12}\). What is the concentration of \(\mathrm{CrO}_{4}^{2-}\) ions in that solution?

1 \(2 \times 10^{-4} \mathrm{M}\)
2 \(16 \times 10^{-4} \mathrm{M}\)
3 \(8 \times 10^{-4} \mathrm{M}\)
4 \(8 \times 10^{-8} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314972 The solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is \(\sqrt{3}\). The solubility product of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is

1 3
2 27
3 \(\sqrt{3}\)
4 \(12 \sqrt{3}\)
CHXI07:EQUILIBRIUM

314931 How many grams of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) will dissolve in \(1 \mathrm{~L}\) of saturated solution? \({{\rm{K}}_{{\rm{SP}}}}\) of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is \({\text{2}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ }}{{\text{M}}^{\text{2}}}\) and its molecular weight is \({\text{128}}\).

1 \(6.4 \times 10^{-3} \mathrm{~g}\)
2 \(6.4 \times 10^{-4} \mathrm{~g}\)
3 \(12.8 \times 10^{-3} \mathrm{~g}\)
4 \(12.8 \times 10^{-4} \mathrm{~g}\)
CHXI07:EQUILIBRIUM

314932 The solubility product of \(\mathrm{AgCl}\) is \(4.0 \times 10^{-10}\) at \(298 \mathrm{~K}\). The solubility of \({\rm{AgCl}}\,{\rm{in}}\,{\rm{0}}{\rm{.04}}\,{\rm{M}}\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\) will be

1 \(2.0 \times 10^{-5} \mathrm{M}\)
2 \(1.0 \times 10^{-4} \mathrm{M}\)
3 \(5.0 \times 10^{-9} \mathrm{M}\)
4 \(2.2 \times 10^{-4} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314933 The solubility of anhydrous \(\mathrm{AlCl}_{3}\) and hydrous \(\mathrm{AlCl}_{3}\) in diethyl ether are \({{\text{S}}_{\text{1}}}\) and \({{\text{S}}_{\text{2}}}\), respectively. Then

1 \({{\rm{S}}_{\rm{1}}}{\rm{ = }}{{\rm{S}}_{\rm{2}}}\)
2 \({{\rm{S}}_{\rm{1}}}{\rm{ > }}{{\rm{S}}_{\rm{2}}}\)
3 \({{\rm{S}}_{\rm{1}}}{\rm{ < }}{{\rm{S}}_{\rm{2}}}\)
4 Can't be predicted
CHXI07:EQUILIBRIUM

314934 The solubility product of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is \(32 \times 10^{-12}\). What is the concentration of \(\mathrm{CrO}_{4}^{2-}\) ions in that solution?

1 \(2 \times 10^{-4} \mathrm{M}\)
2 \(16 \times 10^{-4} \mathrm{M}\)
3 \(8 \times 10^{-4} \mathrm{M}\)
4 \(8 \times 10^{-8} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314972 The solubility of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is \(\sqrt{3}\). The solubility product of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is

1 3
2 27
3 \(\sqrt{3}\)
4 \(12 \sqrt{3}\)
CHXI07:EQUILIBRIUM

314931 How many grams of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) will dissolve in \(1 \mathrm{~L}\) of saturated solution? \({{\rm{K}}_{{\rm{SP}}}}\) of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is \({\text{2}}{\text{.5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ }}{{\text{M}}^{\text{2}}}\) and its molecular weight is \({\text{128}}\).

1 \(6.4 \times 10^{-3} \mathrm{~g}\)
2 \(6.4 \times 10^{-4} \mathrm{~g}\)
3 \(12.8 \times 10^{-3} \mathrm{~g}\)
4 \(12.8 \times 10^{-4} \mathrm{~g}\)
CHXI07:EQUILIBRIUM

314932 The solubility product of \(\mathrm{AgCl}\) is \(4.0 \times 10^{-10}\) at \(298 \mathrm{~K}\). The solubility of \({\rm{AgCl}}\,{\rm{in}}\,{\rm{0}}{\rm{.04}}\,{\rm{M}}\,{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\) will be

1 \(2.0 \times 10^{-5} \mathrm{M}\)
2 \(1.0 \times 10^{-4} \mathrm{M}\)
3 \(5.0 \times 10^{-9} \mathrm{M}\)
4 \(2.2 \times 10^{-4} \mathrm{M}\)
CHXI07:EQUILIBRIUM

314933 The solubility of anhydrous \(\mathrm{AlCl}_{3}\) and hydrous \(\mathrm{AlCl}_{3}\) in diethyl ether are \({{\text{S}}_{\text{1}}}\) and \({{\text{S}}_{\text{2}}}\), respectively. Then

1 \({{\rm{S}}_{\rm{1}}}{\rm{ = }}{{\rm{S}}_{\rm{2}}}\)
2 \({{\rm{S}}_{\rm{1}}}{\rm{ > }}{{\rm{S}}_{\rm{2}}}\)
3 \({{\rm{S}}_{\rm{1}}}{\rm{ < }}{{\rm{S}}_{\rm{2}}}\)
4 Can't be predicted
CHXI07:EQUILIBRIUM

314934 The solubility product of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is \(32 \times 10^{-12}\). What is the concentration of \(\mathrm{CrO}_{4}^{2-}\) ions in that solution?

1 \(2 \times 10^{-4} \mathrm{M}\)
2 \(16 \times 10^{-4} \mathrm{M}\)
3 \(8 \times 10^{-4} \mathrm{M}\)
4 \(8 \times 10^{-8} \mathrm{M}\)