Relationship between Equilibrium Constant, Reaction Quotient and Gibbs Free Energy
CHXI07:EQUILIBRIUM

314870 At \({\text{320 K,}}\) a gas \({{\text{A}}_{\text{2}}}\) is \({\rm{20}}\% \) dissociated to \({\rm{A(g)}}\). The standard free energy change at \(320 \mathrm{~K}\) and \(1 \mathrm{~atm}\) in \({\text{J}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\) is approximately:
\({\text{(R = 8}}{\text{.314J }}{{\text{K}}^{{\text{ - 1}}}}\;{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{; ln2 = 0}}{\text{.693 ; ln3 = 1}}{\text{.098)}}\)

1 1844
2 2068
3 4281
4 4763
CHXI07:EQUILIBRIUM

314871 For the reaction \({{\text{H}}_{\text{2}}}{\text{(g) + }}{{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\), the standard free energy is \(\Delta {\text{G}}^\circ {\text{ > 0}}\) The equilibrium constant \((\mathrm{K})\) would be

1 \({\text{K = 0}}\)
2 \(\mathrm{K}>1\)
3 \(\mathrm{K}=1\)
4 \(\mathrm{K} < 1\)
CHXI07:EQUILIBRIUM

314872 Which of the following options will be correct for the stage of half completion of the reaction, \({\text{A}} \rightleftharpoons {\text{B}}\)?

1 \({\rm{\Delta G^\circ = 0}}\)
2 \({\rm{\Delta G^\circ > 0}}\)
3 \({\rm{\Delta G^\circ < 0}}\)
4 \(\Delta {\text{G}}^\circ {\text{ = - RTln 2}}\)
CHXI07:EQUILIBRIUM

314873 The standard Gibb's free energy change, \(\Delta {\text{G}}^\circ \) is related to equilibrium constant, \({{\text{K}}_{\text{p}}}\) as

1 \({{\text{K}}_{\text{p}}} = - {\text{RT}}\ln \Delta {\text{G}}^\circ \)
2 \({{\text{K}}_{\text{p}}} = {\left[ {\frac{{\text{e}}}{{{\text{RT}}}}} \right]^{\Delta {\text{G}}^\circ }}\)
3 \({{\text{K}}_{\text{p}}} = - \frac{{\Delta {\text{G}}^\circ }}{{{\text{RT}}}}\)
4 \({{\text{K}}_{\text{p}}} = {{\text{e}}^{ - \Delta {\text{G}}^\circ /{\text{RT}}}}\)
CHXI07:EQUILIBRIUM

314874 The value of \({\rm{\Delta G^\circ }}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \({{\rm{K}}_{\rm{C}}}\) at \(298 \mathrm{~K}\).

1 \(2 \times 10^{-3}\)
2 \(4 \times 10^{-3}\)
3 \(6 \times 10^{-3}\)
4 \(8 \times 10^{-3}\)
CHXI07:EQUILIBRIUM

314870 At \({\text{320 K,}}\) a gas \({{\text{A}}_{\text{2}}}\) is \({\rm{20}}\% \) dissociated to \({\rm{A(g)}}\). The standard free energy change at \(320 \mathrm{~K}\) and \(1 \mathrm{~atm}\) in \({\text{J}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\) is approximately:
\({\text{(R = 8}}{\text{.314J }}{{\text{K}}^{{\text{ - 1}}}}\;{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{; ln2 = 0}}{\text{.693 ; ln3 = 1}}{\text{.098)}}\)

1 1844
2 2068
3 4281
4 4763
CHXI07:EQUILIBRIUM

314871 For the reaction \({{\text{H}}_{\text{2}}}{\text{(g) + }}{{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\), the standard free energy is \(\Delta {\text{G}}^\circ {\text{ > 0}}\) The equilibrium constant \((\mathrm{K})\) would be

1 \({\text{K = 0}}\)
2 \(\mathrm{K}>1\)
3 \(\mathrm{K}=1\)
4 \(\mathrm{K} < 1\)
CHXI07:EQUILIBRIUM

314872 Which of the following options will be correct for the stage of half completion of the reaction, \({\text{A}} \rightleftharpoons {\text{B}}\)?

1 \({\rm{\Delta G^\circ = 0}}\)
2 \({\rm{\Delta G^\circ > 0}}\)
3 \({\rm{\Delta G^\circ < 0}}\)
4 \(\Delta {\text{G}}^\circ {\text{ = - RTln 2}}\)
CHXI07:EQUILIBRIUM

314873 The standard Gibb's free energy change, \(\Delta {\text{G}}^\circ \) is related to equilibrium constant, \({{\text{K}}_{\text{p}}}\) as

1 \({{\text{K}}_{\text{p}}} = - {\text{RT}}\ln \Delta {\text{G}}^\circ \)
2 \({{\text{K}}_{\text{p}}} = {\left[ {\frac{{\text{e}}}{{{\text{RT}}}}} \right]^{\Delta {\text{G}}^\circ }}\)
3 \({{\text{K}}_{\text{p}}} = - \frac{{\Delta {\text{G}}^\circ }}{{{\text{RT}}}}\)
4 \({{\text{K}}_{\text{p}}} = {{\text{e}}^{ - \Delta {\text{G}}^\circ /{\text{RT}}}}\)
CHXI07:EQUILIBRIUM

314874 The value of \({\rm{\Delta G^\circ }}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \({{\rm{K}}_{\rm{C}}}\) at \(298 \mathrm{~K}\).

1 \(2 \times 10^{-3}\)
2 \(4 \times 10^{-3}\)
3 \(6 \times 10^{-3}\)
4 \(8 \times 10^{-3}\)
CHXI07:EQUILIBRIUM

314870 At \({\text{320 K,}}\) a gas \({{\text{A}}_{\text{2}}}\) is \({\rm{20}}\% \) dissociated to \({\rm{A(g)}}\). The standard free energy change at \(320 \mathrm{~K}\) and \(1 \mathrm{~atm}\) in \({\text{J}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\) is approximately:
\({\text{(R = 8}}{\text{.314J }}{{\text{K}}^{{\text{ - 1}}}}\;{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{; ln2 = 0}}{\text{.693 ; ln3 = 1}}{\text{.098)}}\)

1 1844
2 2068
3 4281
4 4763
CHXI07:EQUILIBRIUM

314871 For the reaction \({{\text{H}}_{\text{2}}}{\text{(g) + }}{{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\), the standard free energy is \(\Delta {\text{G}}^\circ {\text{ > 0}}\) The equilibrium constant \((\mathrm{K})\) would be

1 \({\text{K = 0}}\)
2 \(\mathrm{K}>1\)
3 \(\mathrm{K}=1\)
4 \(\mathrm{K} < 1\)
CHXI07:EQUILIBRIUM

314872 Which of the following options will be correct for the stage of half completion of the reaction, \({\text{A}} \rightleftharpoons {\text{B}}\)?

1 \({\rm{\Delta G^\circ = 0}}\)
2 \({\rm{\Delta G^\circ > 0}}\)
3 \({\rm{\Delta G^\circ < 0}}\)
4 \(\Delta {\text{G}}^\circ {\text{ = - RTln 2}}\)
CHXI07:EQUILIBRIUM

314873 The standard Gibb's free energy change, \(\Delta {\text{G}}^\circ \) is related to equilibrium constant, \({{\text{K}}_{\text{p}}}\) as

1 \({{\text{K}}_{\text{p}}} = - {\text{RT}}\ln \Delta {\text{G}}^\circ \)
2 \({{\text{K}}_{\text{p}}} = {\left[ {\frac{{\text{e}}}{{{\text{RT}}}}} \right]^{\Delta {\text{G}}^\circ }}\)
3 \({{\text{K}}_{\text{p}}} = - \frac{{\Delta {\text{G}}^\circ }}{{{\text{RT}}}}\)
4 \({{\text{K}}_{\text{p}}} = {{\text{e}}^{ - \Delta {\text{G}}^\circ /{\text{RT}}}}\)
CHXI07:EQUILIBRIUM

314874 The value of \({\rm{\Delta G^\circ }}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \({{\rm{K}}_{\rm{C}}}\) at \(298 \mathrm{~K}\).

1 \(2 \times 10^{-3}\)
2 \(4 \times 10^{-3}\)
3 \(6 \times 10^{-3}\)
4 \(8 \times 10^{-3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

314870 At \({\text{320 K,}}\) a gas \({{\text{A}}_{\text{2}}}\) is \({\rm{20}}\% \) dissociated to \({\rm{A(g)}}\). The standard free energy change at \(320 \mathrm{~K}\) and \(1 \mathrm{~atm}\) in \({\text{J}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\) is approximately:
\({\text{(R = 8}}{\text{.314J }}{{\text{K}}^{{\text{ - 1}}}}\;{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{; ln2 = 0}}{\text{.693 ; ln3 = 1}}{\text{.098)}}\)

1 1844
2 2068
3 4281
4 4763
CHXI07:EQUILIBRIUM

314871 For the reaction \({{\text{H}}_{\text{2}}}{\text{(g) + }}{{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\), the standard free energy is \(\Delta {\text{G}}^\circ {\text{ > 0}}\) The equilibrium constant \((\mathrm{K})\) would be

1 \({\text{K = 0}}\)
2 \(\mathrm{K}>1\)
3 \(\mathrm{K}=1\)
4 \(\mathrm{K} < 1\)
CHXI07:EQUILIBRIUM

314872 Which of the following options will be correct for the stage of half completion of the reaction, \({\text{A}} \rightleftharpoons {\text{B}}\)?

1 \({\rm{\Delta G^\circ = 0}}\)
2 \({\rm{\Delta G^\circ > 0}}\)
3 \({\rm{\Delta G^\circ < 0}}\)
4 \(\Delta {\text{G}}^\circ {\text{ = - RTln 2}}\)
CHXI07:EQUILIBRIUM

314873 The standard Gibb's free energy change, \(\Delta {\text{G}}^\circ \) is related to equilibrium constant, \({{\text{K}}_{\text{p}}}\) as

1 \({{\text{K}}_{\text{p}}} = - {\text{RT}}\ln \Delta {\text{G}}^\circ \)
2 \({{\text{K}}_{\text{p}}} = {\left[ {\frac{{\text{e}}}{{{\text{RT}}}}} \right]^{\Delta {\text{G}}^\circ }}\)
3 \({{\text{K}}_{\text{p}}} = - \frac{{\Delta {\text{G}}^\circ }}{{{\text{RT}}}}\)
4 \({{\text{K}}_{\text{p}}} = {{\text{e}}^{ - \Delta {\text{G}}^\circ /{\text{RT}}}}\)
CHXI07:EQUILIBRIUM

314874 The value of \({\rm{\Delta G^\circ }}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \({{\rm{K}}_{\rm{C}}}\) at \(298 \mathrm{~K}\).

1 \(2 \times 10^{-3}\)
2 \(4 \times 10^{-3}\)
3 \(6 \times 10^{-3}\)
4 \(8 \times 10^{-3}\)
CHXI07:EQUILIBRIUM

314870 At \({\text{320 K,}}\) a gas \({{\text{A}}_{\text{2}}}\) is \({\rm{20}}\% \) dissociated to \({\rm{A(g)}}\). The standard free energy change at \(320 \mathrm{~K}\) and \(1 \mathrm{~atm}\) in \({\text{J}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}\) is approximately:
\({\text{(R = 8}}{\text{.314J }}{{\text{K}}^{{\text{ - 1}}}}\;{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{; ln2 = 0}}{\text{.693 ; ln3 = 1}}{\text{.098)}}\)

1 1844
2 2068
3 4281
4 4763
CHXI07:EQUILIBRIUM

314871 For the reaction \({{\text{H}}_{\text{2}}}{\text{(g) + }}{{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\), the standard free energy is \(\Delta {\text{G}}^\circ {\text{ > 0}}\) The equilibrium constant \((\mathrm{K})\) would be

1 \({\text{K = 0}}\)
2 \(\mathrm{K}>1\)
3 \(\mathrm{K}=1\)
4 \(\mathrm{K} < 1\)
CHXI07:EQUILIBRIUM

314872 Which of the following options will be correct for the stage of half completion of the reaction, \({\text{A}} \rightleftharpoons {\text{B}}\)?

1 \({\rm{\Delta G^\circ = 0}}\)
2 \({\rm{\Delta G^\circ > 0}}\)
3 \({\rm{\Delta G^\circ < 0}}\)
4 \(\Delta {\text{G}}^\circ {\text{ = - RTln 2}}\)
CHXI07:EQUILIBRIUM

314873 The standard Gibb's free energy change, \(\Delta {\text{G}}^\circ \) is related to equilibrium constant, \({{\text{K}}_{\text{p}}}\) as

1 \({{\text{K}}_{\text{p}}} = - {\text{RT}}\ln \Delta {\text{G}}^\circ \)
2 \({{\text{K}}_{\text{p}}} = {\left[ {\frac{{\text{e}}}{{{\text{RT}}}}} \right]^{\Delta {\text{G}}^\circ }}\)
3 \({{\text{K}}_{\text{p}}} = - \frac{{\Delta {\text{G}}^\circ }}{{{\text{RT}}}}\)
4 \({{\text{K}}_{\text{p}}} = {{\text{e}}^{ - \Delta {\text{G}}^\circ /{\text{RT}}}}\)
CHXI07:EQUILIBRIUM

314874 The value of \({\rm{\Delta G^\circ }}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \({{\rm{K}}_{\rm{C}}}\) at \(298 \mathrm{~K}\).

1 \(2 \times 10^{-3}\)
2 \(4 \times 10^{-3}\)
3 \(6 \times 10^{-3}\)
4 \(8 \times 10^{-3}\)