Relationship between Equilibrium Constant, Reaction Quotient and Gibbs Free Energy
CHXI07:EQUILIBRIUM

314883 For a system in equilibrium, \(\Delta \mathrm{G}=0\) under conditions of constant

1 temperature and pressure
2 temperature and volume
3 energy and volume
4 pressure and volume
CHXI07:EQUILIBRIUM

314884 The following reaction is performed at \(298 \mathrm{~K}\). \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)
The standard free energy of formation of\({\text{ N}}{{\text{O}}_{{\text{(g)}}}}\) is \(86.6 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). What is the standard free energy of formation of \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) at \({\text{298}}\;{\text{K}}?\) \(({{\text{K}}_{\text{P}}}{\text{ = 1}}.{\text{6}} \times {\text{1}}{{\text{0}}^{{\text{12}}}})\)

1 \({\rm{86600 - }}\dfrac{{{\rm{ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)}}{{{\rm{R(298)}}}}\)
2 \({\rm{0}}{\rm{.5}}\left[ {{\rm{2 \times 86,600 - R(298)ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)} \right]\)
3 \({\text{R(298) }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right){\text{ - 86600}}\)
4 \({\text{86600 + R(298)}}{\mkern 1mu} {\mkern 1mu} \,{\text{ln }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right)\)
CHXI07:EQUILIBRIUM

314885 Equilibrium constant for a reaction is 20. What is the value of \(\Delta \mathrm{G}^{\circ}\) at \(300 \mathrm{~K} ?\left(\mathrm{R}=8 \times 10^{-3} \mathrm{~kJ}\right)\)

1 \(16.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(-5.527 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
3 \(-2.763 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
4 \(-7.191 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
CHXI07:EQUILIBRIUM

314886 The standard state Gibb's energy change for the isomerisation reaction, cis-2-pentene \(\rightleftharpoons\) trans-2-pentene is \(-3.67 \mathrm{~kJ}\) mol at \(400 \mathrm{~K}\). If more trans-2-pentene is added to the reaction vessel, then

1 more cis-2-pentene is formed
2 equilibrium shifts in the forward reaction
3 equilibrium remains unaltered
4 more trans-2-pentene is produced
CHXI07:EQUILIBRIUM

314887 The standard Gibbs energy change at 300 K for the reaction, \(2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}\) is 2494.2 J . At a given time, the composition of the reaction mixture is \([\mathrm{A}]=\dfrac{1}{2},[\mathrm{~B}]=2\) and \([\mathrm{C}]=\dfrac{1}{2}\). The reaction proceeds in the
\([\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]\)

1 Forward direction because \({\rm{Q}}\,\, > \,\,{{\rm{K}}_{\rm{c}}}\)
2 Reverse direction because \(\mathrm{Q}>\mathrm{K}_{\mathrm{c}}\)
3 Forward direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
4 Reverse direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
CHXI07:EQUILIBRIUM

314883 For a system in equilibrium, \(\Delta \mathrm{G}=0\) under conditions of constant

1 temperature and pressure
2 temperature and volume
3 energy and volume
4 pressure and volume
CHXI07:EQUILIBRIUM

314884 The following reaction is performed at \(298 \mathrm{~K}\). \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)
The standard free energy of formation of\({\text{ N}}{{\text{O}}_{{\text{(g)}}}}\) is \(86.6 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). What is the standard free energy of formation of \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) at \({\text{298}}\;{\text{K}}?\) \(({{\text{K}}_{\text{P}}}{\text{ = 1}}.{\text{6}} \times {\text{1}}{{\text{0}}^{{\text{12}}}})\)

1 \({\rm{86600 - }}\dfrac{{{\rm{ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)}}{{{\rm{R(298)}}}}\)
2 \({\rm{0}}{\rm{.5}}\left[ {{\rm{2 \times 86,600 - R(298)ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)} \right]\)
3 \({\text{R(298) }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right){\text{ - 86600}}\)
4 \({\text{86600 + R(298)}}{\mkern 1mu} {\mkern 1mu} \,{\text{ln }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right)\)
CHXI07:EQUILIBRIUM

314885 Equilibrium constant for a reaction is 20. What is the value of \(\Delta \mathrm{G}^{\circ}\) at \(300 \mathrm{~K} ?\left(\mathrm{R}=8 \times 10^{-3} \mathrm{~kJ}\right)\)

1 \(16.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(-5.527 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
3 \(-2.763 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
4 \(-7.191 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
CHXI07:EQUILIBRIUM

314886 The standard state Gibb's energy change for the isomerisation reaction, cis-2-pentene \(\rightleftharpoons\) trans-2-pentene is \(-3.67 \mathrm{~kJ}\) mol at \(400 \mathrm{~K}\). If more trans-2-pentene is added to the reaction vessel, then

1 more cis-2-pentene is formed
2 equilibrium shifts in the forward reaction
3 equilibrium remains unaltered
4 more trans-2-pentene is produced
CHXI07:EQUILIBRIUM

314887 The standard Gibbs energy change at 300 K for the reaction, \(2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}\) is 2494.2 J . At a given time, the composition of the reaction mixture is \([\mathrm{A}]=\dfrac{1}{2},[\mathrm{~B}]=2\) and \([\mathrm{C}]=\dfrac{1}{2}\). The reaction proceeds in the
\([\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]\)

1 Forward direction because \({\rm{Q}}\,\, > \,\,{{\rm{K}}_{\rm{c}}}\)
2 Reverse direction because \(\mathrm{Q}>\mathrm{K}_{\mathrm{c}}\)
3 Forward direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
4 Reverse direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
CHXI07:EQUILIBRIUM

314883 For a system in equilibrium, \(\Delta \mathrm{G}=0\) under conditions of constant

1 temperature and pressure
2 temperature and volume
3 energy and volume
4 pressure and volume
CHXI07:EQUILIBRIUM

314884 The following reaction is performed at \(298 \mathrm{~K}\). \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)
The standard free energy of formation of\({\text{ N}}{{\text{O}}_{{\text{(g)}}}}\) is \(86.6 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). What is the standard free energy of formation of \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) at \({\text{298}}\;{\text{K}}?\) \(({{\text{K}}_{\text{P}}}{\text{ = 1}}.{\text{6}} \times {\text{1}}{{\text{0}}^{{\text{12}}}})\)

1 \({\rm{86600 - }}\dfrac{{{\rm{ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)}}{{{\rm{R(298)}}}}\)
2 \({\rm{0}}{\rm{.5}}\left[ {{\rm{2 \times 86,600 - R(298)ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)} \right]\)
3 \({\text{R(298) }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right){\text{ - 86600}}\)
4 \({\text{86600 + R(298)}}{\mkern 1mu} {\mkern 1mu} \,{\text{ln }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right)\)
CHXI07:EQUILIBRIUM

314885 Equilibrium constant for a reaction is 20. What is the value of \(\Delta \mathrm{G}^{\circ}\) at \(300 \mathrm{~K} ?\left(\mathrm{R}=8 \times 10^{-3} \mathrm{~kJ}\right)\)

1 \(16.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(-5.527 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
3 \(-2.763 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
4 \(-7.191 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
CHXI07:EQUILIBRIUM

314886 The standard state Gibb's energy change for the isomerisation reaction, cis-2-pentene \(\rightleftharpoons\) trans-2-pentene is \(-3.67 \mathrm{~kJ}\) mol at \(400 \mathrm{~K}\). If more trans-2-pentene is added to the reaction vessel, then

1 more cis-2-pentene is formed
2 equilibrium shifts in the forward reaction
3 equilibrium remains unaltered
4 more trans-2-pentene is produced
CHXI07:EQUILIBRIUM

314887 The standard Gibbs energy change at 300 K for the reaction, \(2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}\) is 2494.2 J . At a given time, the composition of the reaction mixture is \([\mathrm{A}]=\dfrac{1}{2},[\mathrm{~B}]=2\) and \([\mathrm{C}]=\dfrac{1}{2}\). The reaction proceeds in the
\([\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]\)

1 Forward direction because \({\rm{Q}}\,\, > \,\,{{\rm{K}}_{\rm{c}}}\)
2 Reverse direction because \(\mathrm{Q}>\mathrm{K}_{\mathrm{c}}\)
3 Forward direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
4 Reverse direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
CHXI07:EQUILIBRIUM

314883 For a system in equilibrium, \(\Delta \mathrm{G}=0\) under conditions of constant

1 temperature and pressure
2 temperature and volume
3 energy and volume
4 pressure and volume
CHXI07:EQUILIBRIUM

314884 The following reaction is performed at \(298 \mathrm{~K}\). \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)
The standard free energy of formation of\({\text{ N}}{{\text{O}}_{{\text{(g)}}}}\) is \(86.6 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). What is the standard free energy of formation of \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) at \({\text{298}}\;{\text{K}}?\) \(({{\text{K}}_{\text{P}}}{\text{ = 1}}.{\text{6}} \times {\text{1}}{{\text{0}}^{{\text{12}}}})\)

1 \({\rm{86600 - }}\dfrac{{{\rm{ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)}}{{{\rm{R(298)}}}}\)
2 \({\rm{0}}{\rm{.5}}\left[ {{\rm{2 \times 86,600 - R(298)ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)} \right]\)
3 \({\text{R(298) }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right){\text{ - 86600}}\)
4 \({\text{86600 + R(298)}}{\mkern 1mu} {\mkern 1mu} \,{\text{ln }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right)\)
CHXI07:EQUILIBRIUM

314885 Equilibrium constant for a reaction is 20. What is the value of \(\Delta \mathrm{G}^{\circ}\) at \(300 \mathrm{~K} ?\left(\mathrm{R}=8 \times 10^{-3} \mathrm{~kJ}\right)\)

1 \(16.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(-5.527 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
3 \(-2.763 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
4 \(-7.191 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
CHXI07:EQUILIBRIUM

314886 The standard state Gibb's energy change for the isomerisation reaction, cis-2-pentene \(\rightleftharpoons\) trans-2-pentene is \(-3.67 \mathrm{~kJ}\) mol at \(400 \mathrm{~K}\). If more trans-2-pentene is added to the reaction vessel, then

1 more cis-2-pentene is formed
2 equilibrium shifts in the forward reaction
3 equilibrium remains unaltered
4 more trans-2-pentene is produced
CHXI07:EQUILIBRIUM

314887 The standard Gibbs energy change at 300 K for the reaction, \(2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}\) is 2494.2 J . At a given time, the composition of the reaction mixture is \([\mathrm{A}]=\dfrac{1}{2},[\mathrm{~B}]=2\) and \([\mathrm{C}]=\dfrac{1}{2}\). The reaction proceeds in the
\([\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]\)

1 Forward direction because \({\rm{Q}}\,\, > \,\,{{\rm{K}}_{\rm{c}}}\)
2 Reverse direction because \(\mathrm{Q}>\mathrm{K}_{\mathrm{c}}\)
3 Forward direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
4 Reverse direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
CHXI07:EQUILIBRIUM

314883 For a system in equilibrium, \(\Delta \mathrm{G}=0\) under conditions of constant

1 temperature and pressure
2 temperature and volume
3 energy and volume
4 pressure and volume
CHXI07:EQUILIBRIUM

314884 The following reaction is performed at \(298 \mathrm{~K}\). \({\text{2NO(g) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)
The standard free energy of formation of\({\text{ N}}{{\text{O}}_{{\text{(g)}}}}\) is \(86.6 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). What is the standard free energy of formation of \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) at \({\text{298}}\;{\text{K}}?\) \(({{\text{K}}_{\text{P}}}{\text{ = 1}}.{\text{6}} \times {\text{1}}{{\text{0}}^{{\text{12}}}})\)

1 \({\rm{86600 - }}\dfrac{{{\rm{ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)}}{{{\rm{R(298)}}}}\)
2 \({\rm{0}}{\rm{.5}}\left[ {{\rm{2 \times 86,600 - R(298)ln}}\left( {{\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{12}}}}} \right)} \right]\)
3 \({\text{R(298) }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right){\text{ - 86600}}\)
4 \({\text{86600 + R(298)}}{\mkern 1mu} {\mkern 1mu} \,{\text{ln }}\left( {{\text{1}}{\text{.6 }} \times {\text{ 1}}{{\text{0}}^{{\text{12}}}}} \right)\)
CHXI07:EQUILIBRIUM

314885 Equilibrium constant for a reaction is 20. What is the value of \(\Delta \mathrm{G}^{\circ}\) at \(300 \mathrm{~K} ?\left(\mathrm{R}=8 \times 10^{-3} \mathrm{~kJ}\right)\)

1 \(16.63 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
2 \(-5.527 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
3 \(-2.763 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
4 \(-7.191 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
CHXI07:EQUILIBRIUM

314886 The standard state Gibb's energy change for the isomerisation reaction, cis-2-pentene \(\rightleftharpoons\) trans-2-pentene is \(-3.67 \mathrm{~kJ}\) mol at \(400 \mathrm{~K}\). If more trans-2-pentene is added to the reaction vessel, then

1 more cis-2-pentene is formed
2 equilibrium shifts in the forward reaction
3 equilibrium remains unaltered
4 more trans-2-pentene is produced
CHXI07:EQUILIBRIUM

314887 The standard Gibbs energy change at 300 K for the reaction, \(2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}\) is 2494.2 J . At a given time, the composition of the reaction mixture is \([\mathrm{A}]=\dfrac{1}{2},[\mathrm{~B}]=2\) and \([\mathrm{C}]=\dfrac{1}{2}\). The reaction proceeds in the
\([\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]\)

1 Forward direction because \({\rm{Q}}\,\, > \,\,{{\rm{K}}_{\rm{c}}}\)
2 Reverse direction because \(\mathrm{Q}>\mathrm{K}_{\mathrm{c}}\)
3 Forward direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)
4 Reverse direction because \(\mathrm{Q} < \mathrm{K}_{\mathrm{c}}\)