Explanation:
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{PC}}{{\text{l}}_{\text{5}}} \rightleftharpoons {\text{PC}}{{\text{l}}_{\text{3}}}{\text{ + }}\,{\text{C}}{{\text{l}}_{\text{2}}}\)
\({\rm{Initial}}\,{\rm{conc}}{\rm{.}}\,\,\,1{\rm{mole}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\)
\({\rm{At}}\,\,{\rm{eq}}\,.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 - {\rm{\alpha }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{\alpha }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{\alpha }}\)
\({\rm{Total}}\,{\rm{number}}\,{\rm{of}}\,{\rm{moles}}\,\)\(\,\,\,\,\, = \,1 - {\rm{\alpha }} + {\rm{\alpha }} + {\rm{\alpha }} = 1 + {\rm{\alpha }}\)
\({{\rm{K}}_{\rm{p}}} = \frac{{{{\rm{p}}_{{\rm{PC}}{{\rm{l}}_{\rm{3}}}}} \times {{\rm{p}}_{{\rm{C}}{{\rm{l}}_{\rm{2}}}}}}}{{{{\rm{p}}_{{\rm{PC}}{{\rm{l}}_{\rm{5}}}}}}} = \frac{{{{\rm{\alpha }}^{\rm{2}}}}}{{1 - {{\rm{\alpha }}^{\rm{2}}}}} \cdot {\rm{P}}\)
\({{\rm{K}}_{\rm{p}}} = \frac{{0.2 \times 0.2}}{{1 - {{(0.2)}^2}}}\)
\( = 0.0417 \approx 0.042{\rm{\;atm}}\)