Acids and Bases
CHXI07:EQUILIBRIUM

314791 The dissociation constant of weak monobasic acid is \(2.7 \times 10^{-5}\). If degree of dissociation of acid is \(3 \times 10^{-2}\), what is the concentration of acid?

1 \(0.24 \mathrm{M}\)
2 \(0.03 \mathrm{M}\)
3 \(0.3 \mathrm{M}\)
4 \(0.11 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314792 Which of the following is NOT a correct mathematical equation for Ostwald dilution law?

1 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{c}}}} \)
2 \({\rm{K = }}\frac{{{ \propto ^2}}}{{\rm{V}}}\)
3 \({\rm{K = }}{ \propto ^2}{\rm{c}}\)
4 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{V}}}} \)
CHXI07:EQUILIBRIUM

314793 \(\mathrm{K}_{\mathrm{a}}\) for \(\mathrm{HA}\) is \(4.9 \times {10^{ - 8}}\). After making the necessary approximation the \(\%\) dissociation for its decimolar solution is ____.

1 7
2 0.7
3 0.07
4 0.007
CHXI07:EQUILIBRIUM

314794 The \(\mathrm{pH}\) of monoacidic weak base is 10.9 . Calculate the percent dissociation in \(0.02 \mathrm{M}\) solution.

1 \(7.92 \%\)
2 \(3.95 \%\)
3 \(6.25 \%\)
4 \(2.51 \%\)
CHXI07:EQUILIBRIUM

314795 BOH is a weak base. Molar concentration of
BOH that provides a \(\left[ {{\text{O}}{{\text{H}}^ - }} \right]\,\,{\text{of}}\,1.5 \times {10^{ - 3}}{\text{M}}\,{\mkern 1mu} {\text{is}}\)
\({{\text{K}}_{\text{b}}} = ({\text{BOH}}) = 1.5 \times {10^{ - 5}}\)

1 \(1.5 \times 10^{-5} \mathrm{M}\)
2 \(0.015 \mathrm{M}\)
3 \(0.0015 \mathrm{M}\)
4 \(0.15 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314791 The dissociation constant of weak monobasic acid is \(2.7 \times 10^{-5}\). If degree of dissociation of acid is \(3 \times 10^{-2}\), what is the concentration of acid?

1 \(0.24 \mathrm{M}\)
2 \(0.03 \mathrm{M}\)
3 \(0.3 \mathrm{M}\)
4 \(0.11 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314792 Which of the following is NOT a correct mathematical equation for Ostwald dilution law?

1 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{c}}}} \)
2 \({\rm{K = }}\frac{{{ \propto ^2}}}{{\rm{V}}}\)
3 \({\rm{K = }}{ \propto ^2}{\rm{c}}\)
4 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{V}}}} \)
CHXI07:EQUILIBRIUM

314793 \(\mathrm{K}_{\mathrm{a}}\) for \(\mathrm{HA}\) is \(4.9 \times {10^{ - 8}}\). After making the necessary approximation the \(\%\) dissociation for its decimolar solution is ____.

1 7
2 0.7
3 0.07
4 0.007
CHXI07:EQUILIBRIUM

314794 The \(\mathrm{pH}\) of monoacidic weak base is 10.9 . Calculate the percent dissociation in \(0.02 \mathrm{M}\) solution.

1 \(7.92 \%\)
2 \(3.95 \%\)
3 \(6.25 \%\)
4 \(2.51 \%\)
CHXI07:EQUILIBRIUM

314795 BOH is a weak base. Molar concentration of
BOH that provides a \(\left[ {{\text{O}}{{\text{H}}^ - }} \right]\,\,{\text{of}}\,1.5 \times {10^{ - 3}}{\text{M}}\,{\mkern 1mu} {\text{is}}\)
\({{\text{K}}_{\text{b}}} = ({\text{BOH}}) = 1.5 \times {10^{ - 5}}\)

1 \(1.5 \times 10^{-5} \mathrm{M}\)
2 \(0.015 \mathrm{M}\)
3 \(0.0015 \mathrm{M}\)
4 \(0.15 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314791 The dissociation constant of weak monobasic acid is \(2.7 \times 10^{-5}\). If degree of dissociation of acid is \(3 \times 10^{-2}\), what is the concentration of acid?

1 \(0.24 \mathrm{M}\)
2 \(0.03 \mathrm{M}\)
3 \(0.3 \mathrm{M}\)
4 \(0.11 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314792 Which of the following is NOT a correct mathematical equation for Ostwald dilution law?

1 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{c}}}} \)
2 \({\rm{K = }}\frac{{{ \propto ^2}}}{{\rm{V}}}\)
3 \({\rm{K = }}{ \propto ^2}{\rm{c}}\)
4 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{V}}}} \)
CHXI07:EQUILIBRIUM

314793 \(\mathrm{K}_{\mathrm{a}}\) for \(\mathrm{HA}\) is \(4.9 \times {10^{ - 8}}\). After making the necessary approximation the \(\%\) dissociation for its decimolar solution is ____.

1 7
2 0.7
3 0.07
4 0.007
CHXI07:EQUILIBRIUM

314794 The \(\mathrm{pH}\) of monoacidic weak base is 10.9 . Calculate the percent dissociation in \(0.02 \mathrm{M}\) solution.

1 \(7.92 \%\)
2 \(3.95 \%\)
3 \(6.25 \%\)
4 \(2.51 \%\)
CHXI07:EQUILIBRIUM

314795 BOH is a weak base. Molar concentration of
BOH that provides a \(\left[ {{\text{O}}{{\text{H}}^ - }} \right]\,\,{\text{of}}\,1.5 \times {10^{ - 3}}{\text{M}}\,{\mkern 1mu} {\text{is}}\)
\({{\text{K}}_{\text{b}}} = ({\text{BOH}}) = 1.5 \times {10^{ - 5}}\)

1 \(1.5 \times 10^{-5} \mathrm{M}\)
2 \(0.015 \mathrm{M}\)
3 \(0.0015 \mathrm{M}\)
4 \(0.15 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314791 The dissociation constant of weak monobasic acid is \(2.7 \times 10^{-5}\). If degree of dissociation of acid is \(3 \times 10^{-2}\), what is the concentration of acid?

1 \(0.24 \mathrm{M}\)
2 \(0.03 \mathrm{M}\)
3 \(0.3 \mathrm{M}\)
4 \(0.11 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314792 Which of the following is NOT a correct mathematical equation for Ostwald dilution law?

1 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{c}}}} \)
2 \({\rm{K = }}\frac{{{ \propto ^2}}}{{\rm{V}}}\)
3 \({\rm{K = }}{ \propto ^2}{\rm{c}}\)
4 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{V}}}} \)
CHXI07:EQUILIBRIUM

314793 \(\mathrm{K}_{\mathrm{a}}\) for \(\mathrm{HA}\) is \(4.9 \times {10^{ - 8}}\). After making the necessary approximation the \(\%\) dissociation for its decimolar solution is ____.

1 7
2 0.7
3 0.07
4 0.007
CHXI07:EQUILIBRIUM

314794 The \(\mathrm{pH}\) of monoacidic weak base is 10.9 . Calculate the percent dissociation in \(0.02 \mathrm{M}\) solution.

1 \(7.92 \%\)
2 \(3.95 \%\)
3 \(6.25 \%\)
4 \(2.51 \%\)
CHXI07:EQUILIBRIUM

314795 BOH is a weak base. Molar concentration of
BOH that provides a \(\left[ {{\text{O}}{{\text{H}}^ - }} \right]\,\,{\text{of}}\,1.5 \times {10^{ - 3}}{\text{M}}\,{\mkern 1mu} {\text{is}}\)
\({{\text{K}}_{\text{b}}} = ({\text{BOH}}) = 1.5 \times {10^{ - 5}}\)

1 \(1.5 \times 10^{-5} \mathrm{M}\)
2 \(0.015 \mathrm{M}\)
3 \(0.0015 \mathrm{M}\)
4 \(0.15 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314791 The dissociation constant of weak monobasic acid is \(2.7 \times 10^{-5}\). If degree of dissociation of acid is \(3 \times 10^{-2}\), what is the concentration of acid?

1 \(0.24 \mathrm{M}\)
2 \(0.03 \mathrm{M}\)
3 \(0.3 \mathrm{M}\)
4 \(0.11 \mathrm{M}\)
CHXI07:EQUILIBRIUM

314792 Which of the following is NOT a correct mathematical equation for Ostwald dilution law?

1 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{c}}}} \)
2 \({\rm{K = }}\frac{{{ \propto ^2}}}{{\rm{V}}}\)
3 \({\rm{K = }}{ \propto ^2}{\rm{c}}\)
4 \( \propto {\rm{ = }}\sqrt {\frac{{{{\rm{K}}_{\rm{a}}}}}{{\rm{V}}}} \)
CHXI07:EQUILIBRIUM

314793 \(\mathrm{K}_{\mathrm{a}}\) for \(\mathrm{HA}\) is \(4.9 \times {10^{ - 8}}\). After making the necessary approximation the \(\%\) dissociation for its decimolar solution is ____.

1 7
2 0.7
3 0.07
4 0.007
CHXI07:EQUILIBRIUM

314794 The \(\mathrm{pH}\) of monoacidic weak base is 10.9 . Calculate the percent dissociation in \(0.02 \mathrm{M}\) solution.

1 \(7.92 \%\)
2 \(3.95 \%\)
3 \(6.25 \%\)
4 \(2.51 \%\)
CHXI07:EQUILIBRIUM

314795 BOH is a weak base. Molar concentration of
BOH that provides a \(\left[ {{\text{O}}{{\text{H}}^ - }} \right]\,\,{\text{of}}\,1.5 \times {10^{ - 3}}{\text{M}}\,{\mkern 1mu} {\text{is}}\)
\({{\text{K}}_{\text{b}}} = ({\text{BOH}}) = 1.5 \times {10^{ - 5}}\)

1 \(1.5 \times 10^{-5} \mathrm{M}\)
2 \(0.015 \mathrm{M}\)
3 \(0.0015 \mathrm{M}\)
4 \(0.15 \mathrm{M}\)