The Gas Laws
CHXI06:STATES OF MATTER

314361 Initial volume of a gas is 1 L at temperature 100 K. What is the volume of a gas at 300 K .

1 1
2 2
3 3
4 4
CHXI06:STATES OF MATTER

314362 Which of the following equations does NOT represent Charle's law for a given mass of gas at constant pressure?

1 \(\mathrm{\dfrac{V}{T}=K(}\) constant \(\mathrm{)}\)
2 \(\mathrm{\log \mathrm{V}=\log \mathrm{K}+\log \mathrm{T}}\)
3 \(\mathrm{\log \mathrm{K}=\log \mathrm{V}+\log \mathrm{T}}\)
4 \(\frac{{{\rm{d}}\left( {{\rm{lnV}}} \right)}}{{{\rm{dT}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{\;T}}}}\)
CHXI06:STATES OF MATTER

314363 The slope of the graph between \(\mathrm{\log \mathrm{V}}\) and \(\mathrm{\log \mathrm{T}}\) (Kelvin scale), for a given mass of a gas is

1 \({\rm{ + 1}}\)
2 \({\rm{ - 1}}\)
3 \(\mathrm{\dfrac{1}{P}}\)
4 \(\mathrm{\dfrac{1}{n}}\)
CHXI06:STATES OF MATTER

314364 A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure. Which of the following order of pressure is correct for this gas?
supporting img

1 \({{\rm{P}}_{\rm{1}}}{\rm{ > }}{{\rm{P}}_{\rm{2}}}{\rm{ > }}{{\rm{P}}_{\rm{3}}}{\rm{ > }}{{\rm{P}}_{\rm{4}}}\)
2 \({{\rm{P}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ = }}{{\rm{P}}_{\rm{4}}}\)
3 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ < }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
4 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
CHXI06:STATES OF MATTER

314361 Initial volume of a gas is 1 L at temperature 100 K. What is the volume of a gas at 300 K .

1 1
2 2
3 3
4 4
CHXI06:STATES OF MATTER

314362 Which of the following equations does NOT represent Charle's law for a given mass of gas at constant pressure?

1 \(\mathrm{\dfrac{V}{T}=K(}\) constant \(\mathrm{)}\)
2 \(\mathrm{\log \mathrm{V}=\log \mathrm{K}+\log \mathrm{T}}\)
3 \(\mathrm{\log \mathrm{K}=\log \mathrm{V}+\log \mathrm{T}}\)
4 \(\frac{{{\rm{d}}\left( {{\rm{lnV}}} \right)}}{{{\rm{dT}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{\;T}}}}\)
CHXI06:STATES OF MATTER

314363 The slope of the graph between \(\mathrm{\log \mathrm{V}}\) and \(\mathrm{\log \mathrm{T}}\) (Kelvin scale), for a given mass of a gas is

1 \({\rm{ + 1}}\)
2 \({\rm{ - 1}}\)
3 \(\mathrm{\dfrac{1}{P}}\)
4 \(\mathrm{\dfrac{1}{n}}\)
CHXI06:STATES OF MATTER

314364 A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure. Which of the following order of pressure is correct for this gas?
supporting img

1 \({{\rm{P}}_{\rm{1}}}{\rm{ > }}{{\rm{P}}_{\rm{2}}}{\rm{ > }}{{\rm{P}}_{\rm{3}}}{\rm{ > }}{{\rm{P}}_{\rm{4}}}\)
2 \({{\rm{P}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ = }}{{\rm{P}}_{\rm{4}}}\)
3 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ < }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
4 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI06:STATES OF MATTER

314361 Initial volume of a gas is 1 L at temperature 100 K. What is the volume of a gas at 300 K .

1 1
2 2
3 3
4 4
CHXI06:STATES OF MATTER

314362 Which of the following equations does NOT represent Charle's law for a given mass of gas at constant pressure?

1 \(\mathrm{\dfrac{V}{T}=K(}\) constant \(\mathrm{)}\)
2 \(\mathrm{\log \mathrm{V}=\log \mathrm{K}+\log \mathrm{T}}\)
3 \(\mathrm{\log \mathrm{K}=\log \mathrm{V}+\log \mathrm{T}}\)
4 \(\frac{{{\rm{d}}\left( {{\rm{lnV}}} \right)}}{{{\rm{dT}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{\;T}}}}\)
CHXI06:STATES OF MATTER

314363 The slope of the graph between \(\mathrm{\log \mathrm{V}}\) and \(\mathrm{\log \mathrm{T}}\) (Kelvin scale), for a given mass of a gas is

1 \({\rm{ + 1}}\)
2 \({\rm{ - 1}}\)
3 \(\mathrm{\dfrac{1}{P}}\)
4 \(\mathrm{\dfrac{1}{n}}\)
CHXI06:STATES OF MATTER

314364 A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure. Which of the following order of pressure is correct for this gas?
supporting img

1 \({{\rm{P}}_{\rm{1}}}{\rm{ > }}{{\rm{P}}_{\rm{2}}}{\rm{ > }}{{\rm{P}}_{\rm{3}}}{\rm{ > }}{{\rm{P}}_{\rm{4}}}\)
2 \({{\rm{P}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ = }}{{\rm{P}}_{\rm{4}}}\)
3 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ < }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
4 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
CHXI06:STATES OF MATTER

314361 Initial volume of a gas is 1 L at temperature 100 K. What is the volume of a gas at 300 K .

1 1
2 2
3 3
4 4
CHXI06:STATES OF MATTER

314362 Which of the following equations does NOT represent Charle's law for a given mass of gas at constant pressure?

1 \(\mathrm{\dfrac{V}{T}=K(}\) constant \(\mathrm{)}\)
2 \(\mathrm{\log \mathrm{V}=\log \mathrm{K}+\log \mathrm{T}}\)
3 \(\mathrm{\log \mathrm{K}=\log \mathrm{V}+\log \mathrm{T}}\)
4 \(\frac{{{\rm{d}}\left( {{\rm{lnV}}} \right)}}{{{\rm{dT}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{\;T}}}}\)
CHXI06:STATES OF MATTER

314363 The slope of the graph between \(\mathrm{\log \mathrm{V}}\) and \(\mathrm{\log \mathrm{T}}\) (Kelvin scale), for a given mass of a gas is

1 \({\rm{ + 1}}\)
2 \({\rm{ - 1}}\)
3 \(\mathrm{\dfrac{1}{P}}\)
4 \(\mathrm{\dfrac{1}{n}}\)
CHXI06:STATES OF MATTER

314364 A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure. Which of the following order of pressure is correct for this gas?
supporting img

1 \({{\rm{P}}_{\rm{1}}}{\rm{ > }}{{\rm{P}}_{\rm{2}}}{\rm{ > }}{{\rm{P}}_{\rm{3}}}{\rm{ > }}{{\rm{P}}_{\rm{4}}}\)
2 \({{\rm{P}}_{\rm{1}}}{\rm{ = }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ = }}{{\rm{P}}_{\rm{4}}}\)
3 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ < }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)
4 \({{\rm{P}}_{\rm{1}}}{\rm{ < }}{{\rm{P}}_{\rm{2}}}{\rm{ = }}{{\rm{P}}_{\rm{3}}}{\rm{ < }}{{\rm{P}}_{\rm{4}}}\)