We know,\({{\rm{V}}_{\rm{1}}}{\rm{ < }}{{\rm{V}}_{\rm{3}}}{\rm{ < }}{{\rm{V}}_{\rm{2}}}\) at 273K(from figure) \(\,{\rm{p}} \propto \frac{1}{{\rm{V}}}\) Hence, \({{\rm{p}}_1} > {{\rm{p}}_3} > {{\rm{p}}_2}\)
CHXI06:STATES OF MATTER
314358
The temperature of a certain mass of gas was increased from \(\mathrm{40^{\circ} \mathrm{C}}\) to \(\mathrm{41^{\circ} \mathrm{C}}\) at constant pressure. The volume of the gas
1 Will remain constant
2 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{273 \mathrm{~K}}\)
3 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{40^{\circ} \mathrm{C}}\)
4 Will increase, but the increase in volume cannot be predicted
Explanation:
According to Charle's law, \(\frac{{{{\rm{V}}_{\rm{1}}}}}{{\;{{\rm{V}}_{\rm{2}}}}}{\rm{ = }}\frac{{{{\rm{T}}_{\rm{1}}}}}{{\;{{\rm{T}}_{\rm{2}}}}}\)
CHXI06:STATES OF MATTER
314359
The volume of an ideal gas at \({\mathrm{27^{\circ} \mathrm{C}}}\) is \({\mathrm{30 \mathrm{~cm}^{3}}}\). At what temperature (in Celsius) will the volume of the gas be \({\mathrm{35 \mathrm{~cm}^{3}}}\) ?
314360
A sample of gas occupies 100 mL at \({\mathrm{27^{\circ} \mathrm{C}}}\) 0.9 atm pressure. When volume is changed to 60 mL at the same pressure, the temperature of the gas will be ____ \({\mathrm{{ }^{\circ} \mathrm{C}}}\).
1 180
2 \(-\)180
3 \(-\)93
4 93
Explanation:
For the same amount of gas at constant pressure, \(\frac{{{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}\) \(\therefore \;\;{{\text{T}}_{\text{2}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}{{\text{T}}_{\text{1}}}}}{{{{\text{V}}_{\text{1}}}}}\) \({{\rm{T}}_2} = \frac{{60 \times 300}}{{100}} = 180\;{\rm{K}}\) \( = 180 - 273 = - {\rm{ }}93^\circ {\rm{C}}\)
We know,\({{\rm{V}}_{\rm{1}}}{\rm{ < }}{{\rm{V}}_{\rm{3}}}{\rm{ < }}{{\rm{V}}_{\rm{2}}}\) at 273K(from figure) \(\,{\rm{p}} \propto \frac{1}{{\rm{V}}}\) Hence, \({{\rm{p}}_1} > {{\rm{p}}_3} > {{\rm{p}}_2}\)
CHXI06:STATES OF MATTER
314358
The temperature of a certain mass of gas was increased from \(\mathrm{40^{\circ} \mathrm{C}}\) to \(\mathrm{41^{\circ} \mathrm{C}}\) at constant pressure. The volume of the gas
1 Will remain constant
2 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{273 \mathrm{~K}}\)
3 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{40^{\circ} \mathrm{C}}\)
4 Will increase, but the increase in volume cannot be predicted
Explanation:
According to Charle's law, \(\frac{{{{\rm{V}}_{\rm{1}}}}}{{\;{{\rm{V}}_{\rm{2}}}}}{\rm{ = }}\frac{{{{\rm{T}}_{\rm{1}}}}}{{\;{{\rm{T}}_{\rm{2}}}}}\)
CHXI06:STATES OF MATTER
314359
The volume of an ideal gas at \({\mathrm{27^{\circ} \mathrm{C}}}\) is \({\mathrm{30 \mathrm{~cm}^{3}}}\). At what temperature (in Celsius) will the volume of the gas be \({\mathrm{35 \mathrm{~cm}^{3}}}\) ?
314360
A sample of gas occupies 100 mL at \({\mathrm{27^{\circ} \mathrm{C}}}\) 0.9 atm pressure. When volume is changed to 60 mL at the same pressure, the temperature of the gas will be ____ \({\mathrm{{ }^{\circ} \mathrm{C}}}\).
1 180
2 \(-\)180
3 \(-\)93
4 93
Explanation:
For the same amount of gas at constant pressure, \(\frac{{{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}\) \(\therefore \;\;{{\text{T}}_{\text{2}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}{{\text{T}}_{\text{1}}}}}{{{{\text{V}}_{\text{1}}}}}\) \({{\rm{T}}_2} = \frac{{60 \times 300}}{{100}} = 180\;{\rm{K}}\) \( = 180 - 273 = - {\rm{ }}93^\circ {\rm{C}}\)
We know,\({{\rm{V}}_{\rm{1}}}{\rm{ < }}{{\rm{V}}_{\rm{3}}}{\rm{ < }}{{\rm{V}}_{\rm{2}}}\) at 273K(from figure) \(\,{\rm{p}} \propto \frac{1}{{\rm{V}}}\) Hence, \({{\rm{p}}_1} > {{\rm{p}}_3} > {{\rm{p}}_2}\)
CHXI06:STATES OF MATTER
314358
The temperature of a certain mass of gas was increased from \(\mathrm{40^{\circ} \mathrm{C}}\) to \(\mathrm{41^{\circ} \mathrm{C}}\) at constant pressure. The volume of the gas
1 Will remain constant
2 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{273 \mathrm{~K}}\)
3 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{40^{\circ} \mathrm{C}}\)
4 Will increase, but the increase in volume cannot be predicted
Explanation:
According to Charle's law, \(\frac{{{{\rm{V}}_{\rm{1}}}}}{{\;{{\rm{V}}_{\rm{2}}}}}{\rm{ = }}\frac{{{{\rm{T}}_{\rm{1}}}}}{{\;{{\rm{T}}_{\rm{2}}}}}\)
CHXI06:STATES OF MATTER
314359
The volume of an ideal gas at \({\mathrm{27^{\circ} \mathrm{C}}}\) is \({\mathrm{30 \mathrm{~cm}^{3}}}\). At what temperature (in Celsius) will the volume of the gas be \({\mathrm{35 \mathrm{~cm}^{3}}}\) ?
314360
A sample of gas occupies 100 mL at \({\mathrm{27^{\circ} \mathrm{C}}}\) 0.9 atm pressure. When volume is changed to 60 mL at the same pressure, the temperature of the gas will be ____ \({\mathrm{{ }^{\circ} \mathrm{C}}}\).
1 180
2 \(-\)180
3 \(-\)93
4 93
Explanation:
For the same amount of gas at constant pressure, \(\frac{{{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}\) \(\therefore \;\;{{\text{T}}_{\text{2}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}{{\text{T}}_{\text{1}}}}}{{{{\text{V}}_{\text{1}}}}}\) \({{\rm{T}}_2} = \frac{{60 \times 300}}{{100}} = 180\;{\rm{K}}\) \( = 180 - 273 = - {\rm{ }}93^\circ {\rm{C}}\)
We know,\({{\rm{V}}_{\rm{1}}}{\rm{ < }}{{\rm{V}}_{\rm{3}}}{\rm{ < }}{{\rm{V}}_{\rm{2}}}\) at 273K(from figure) \(\,{\rm{p}} \propto \frac{1}{{\rm{V}}}\) Hence, \({{\rm{p}}_1} > {{\rm{p}}_3} > {{\rm{p}}_2}\)
CHXI06:STATES OF MATTER
314358
The temperature of a certain mass of gas was increased from \(\mathrm{40^{\circ} \mathrm{C}}\) to \(\mathrm{41^{\circ} \mathrm{C}}\) at constant pressure. The volume of the gas
1 Will remain constant
2 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{273 \mathrm{~K}}\)
3 Will increase by \(\mathrm{\dfrac{1}{273}}\) of its volume at \(\mathrm{40^{\circ} \mathrm{C}}\)
4 Will increase, but the increase in volume cannot be predicted
Explanation:
According to Charle's law, \(\frac{{{{\rm{V}}_{\rm{1}}}}}{{\;{{\rm{V}}_{\rm{2}}}}}{\rm{ = }}\frac{{{{\rm{T}}_{\rm{1}}}}}{{\;{{\rm{T}}_{\rm{2}}}}}\)
CHXI06:STATES OF MATTER
314359
The volume of an ideal gas at \({\mathrm{27^{\circ} \mathrm{C}}}\) is \({\mathrm{30 \mathrm{~cm}^{3}}}\). At what temperature (in Celsius) will the volume of the gas be \({\mathrm{35 \mathrm{~cm}^{3}}}\) ?
314360
A sample of gas occupies 100 mL at \({\mathrm{27^{\circ} \mathrm{C}}}\) 0.9 atm pressure. When volume is changed to 60 mL at the same pressure, the temperature of the gas will be ____ \({\mathrm{{ }^{\circ} \mathrm{C}}}\).
1 180
2 \(-\)180
3 \(-\)93
4 93
Explanation:
For the same amount of gas at constant pressure, \(\frac{{{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}\) \(\therefore \;\;{{\text{T}}_{\text{2}}}{\text{ = }}\frac{{{{\text{V}}_{\text{2}}}{{\text{T}}_{\text{1}}}}}{{{{\text{V}}_{\text{1}}}}}\) \({{\rm{T}}_2} = \frac{{60 \times 300}}{{100}} = 180\;{\rm{K}}\) \( = 180 - 273 = - {\rm{ }}93^\circ {\rm{C}}\)