NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXI06:STATES OF MATTER
314168
At \(\mathrm{300 \mathrm{~K}}\), the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen \(\mathrm{\left(N_{2}\right)}\) at 4 bar. The molar mass of gaseous molecule is:
1 \(\mathrm{28 \mathrm{~g} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{56 \mathrm{~g} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{112 \mathrm{~g} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{224 \mathrm{~g} \mathrm{~mol}^{-1}}\)
Explanation:
Density \(\mathrm{(d)=\dfrac{P M}{R T}}\) \(\mathrm{(1 \mathrm{bar}=0.987 \mathrm{~atm})}\) \(\mathrm{d_{N_{2}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300 \mathrm{~K}}}\) Let the molar mass of gas be \(\mathrm{x}\) \(\mathrm{d_{\text {gas }}=\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}}\) Given \(\mathrm{d_{\text {gas }}=d_{N_{2}} \times 2}\) \(\mathrm{\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300} \times 2}\) \(\mathrm{\therefore \quad x=112 \mathrm{~g} / \mathrm{mol}}\).
JEE - 2017
CHXI06:STATES OF MATTER
314169
At S.T.P., weight of 1 litre volume of a gas is 1.25 gram. That gas will be
1 \(\mathrm{\mathrm{N}_{2}}\)
2 \(\mathrm{\mathrm{CO}}\)
3 \(\mathrm{\mathrm{C}_{2} \mathrm{H}_{4}}\)
4 All
Explanation:
\(\mathrm{1 \mathrm{~L}}\) volume of gas weighs \(\mathrm{1.25 \mathrm{~g}}\) 22.4 L volume of gas weighs \(\mathrm{1.25 \times 22.4=28 \mathrm{~g}=}\) Molecular weight of \(\mathrm{\mathrm{N}_{2}}\), \(\mathrm{\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}}\)
CHXI06:STATES OF MATTER
314187
The value of \({\mathrm{P V}}\) for 5.6 L of an ideal gas is ____ \({\mathrm{R T}}\) at NTP.
314170
The density of a gas A is three times that of a gas B. If the molecular mass of \({\mathrm{A}}\) is \({\mathrm{60 \mathrm{~g} \mathrm{~mol}^{-1}}}\), the molecular mass of B is ____ \({\mathrm{\mathrm{g} \mathrm{mol}^{-1}}}\).
314168
At \(\mathrm{300 \mathrm{~K}}\), the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen \(\mathrm{\left(N_{2}\right)}\) at 4 bar. The molar mass of gaseous molecule is:
1 \(\mathrm{28 \mathrm{~g} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{56 \mathrm{~g} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{112 \mathrm{~g} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{224 \mathrm{~g} \mathrm{~mol}^{-1}}\)
Explanation:
Density \(\mathrm{(d)=\dfrac{P M}{R T}}\) \(\mathrm{(1 \mathrm{bar}=0.987 \mathrm{~atm})}\) \(\mathrm{d_{N_{2}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300 \mathrm{~K}}}\) Let the molar mass of gas be \(\mathrm{x}\) \(\mathrm{d_{\text {gas }}=\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}}\) Given \(\mathrm{d_{\text {gas }}=d_{N_{2}} \times 2}\) \(\mathrm{\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300} \times 2}\) \(\mathrm{\therefore \quad x=112 \mathrm{~g} / \mathrm{mol}}\).
JEE - 2017
CHXI06:STATES OF MATTER
314169
At S.T.P., weight of 1 litre volume of a gas is 1.25 gram. That gas will be
1 \(\mathrm{\mathrm{N}_{2}}\)
2 \(\mathrm{\mathrm{CO}}\)
3 \(\mathrm{\mathrm{C}_{2} \mathrm{H}_{4}}\)
4 All
Explanation:
\(\mathrm{1 \mathrm{~L}}\) volume of gas weighs \(\mathrm{1.25 \mathrm{~g}}\) 22.4 L volume of gas weighs \(\mathrm{1.25 \times 22.4=28 \mathrm{~g}=}\) Molecular weight of \(\mathrm{\mathrm{N}_{2}}\), \(\mathrm{\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}}\)
CHXI06:STATES OF MATTER
314187
The value of \({\mathrm{P V}}\) for 5.6 L of an ideal gas is ____ \({\mathrm{R T}}\) at NTP.
314170
The density of a gas A is three times that of a gas B. If the molecular mass of \({\mathrm{A}}\) is \({\mathrm{60 \mathrm{~g} \mathrm{~mol}^{-1}}}\), the molecular mass of B is ____ \({\mathrm{\mathrm{g} \mathrm{mol}^{-1}}}\).
314168
At \(\mathrm{300 \mathrm{~K}}\), the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen \(\mathrm{\left(N_{2}\right)}\) at 4 bar. The molar mass of gaseous molecule is:
1 \(\mathrm{28 \mathrm{~g} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{56 \mathrm{~g} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{112 \mathrm{~g} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{224 \mathrm{~g} \mathrm{~mol}^{-1}}\)
Explanation:
Density \(\mathrm{(d)=\dfrac{P M}{R T}}\) \(\mathrm{(1 \mathrm{bar}=0.987 \mathrm{~atm})}\) \(\mathrm{d_{N_{2}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300 \mathrm{~K}}}\) Let the molar mass of gas be \(\mathrm{x}\) \(\mathrm{d_{\text {gas }}=\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}}\) Given \(\mathrm{d_{\text {gas }}=d_{N_{2}} \times 2}\) \(\mathrm{\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300} \times 2}\) \(\mathrm{\therefore \quad x=112 \mathrm{~g} / \mathrm{mol}}\).
JEE - 2017
CHXI06:STATES OF MATTER
314169
At S.T.P., weight of 1 litre volume of a gas is 1.25 gram. That gas will be
1 \(\mathrm{\mathrm{N}_{2}}\)
2 \(\mathrm{\mathrm{CO}}\)
3 \(\mathrm{\mathrm{C}_{2} \mathrm{H}_{4}}\)
4 All
Explanation:
\(\mathrm{1 \mathrm{~L}}\) volume of gas weighs \(\mathrm{1.25 \mathrm{~g}}\) 22.4 L volume of gas weighs \(\mathrm{1.25 \times 22.4=28 \mathrm{~g}=}\) Molecular weight of \(\mathrm{\mathrm{N}_{2}}\), \(\mathrm{\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}}\)
CHXI06:STATES OF MATTER
314187
The value of \({\mathrm{P V}}\) for 5.6 L of an ideal gas is ____ \({\mathrm{R T}}\) at NTP.
314170
The density of a gas A is three times that of a gas B. If the molecular mass of \({\mathrm{A}}\) is \({\mathrm{60 \mathrm{~g} \mathrm{~mol}^{-1}}}\), the molecular mass of B is ____ \({\mathrm{\mathrm{g} \mathrm{mol}^{-1}}}\).
314168
At \(\mathrm{300 \mathrm{~K}}\), the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen \(\mathrm{\left(N_{2}\right)}\) at 4 bar. The molar mass of gaseous molecule is:
1 \(\mathrm{28 \mathrm{~g} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{56 \mathrm{~g} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{112 \mathrm{~g} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{224 \mathrm{~g} \mathrm{~mol}^{-1}}\)
Explanation:
Density \(\mathrm{(d)=\dfrac{P M}{R T}}\) \(\mathrm{(1 \mathrm{bar}=0.987 \mathrm{~atm})}\) \(\mathrm{d_{N_{2}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300 \mathrm{~K}}}\) Let the molar mass of gas be \(\mathrm{x}\) \(\mathrm{d_{\text {gas }}=\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}}\) Given \(\mathrm{d_{\text {gas }}=d_{N_{2}} \times 2}\) \(\mathrm{\dfrac{2 \times 0.987 \mathrm{~atm} \times x}{R \times 300 \mathrm{~K}}=\dfrac{4 \times 0.987 \mathrm{~atm} \times 28 \mathrm{~g} / \mathrm{mol}}{R \times 300} \times 2}\) \(\mathrm{\therefore \quad x=112 \mathrm{~g} / \mathrm{mol}}\).
JEE - 2017
CHXI06:STATES OF MATTER
314169
At S.T.P., weight of 1 litre volume of a gas is 1.25 gram. That gas will be
1 \(\mathrm{\mathrm{N}_{2}}\)
2 \(\mathrm{\mathrm{CO}}\)
3 \(\mathrm{\mathrm{C}_{2} \mathrm{H}_{4}}\)
4 All
Explanation:
\(\mathrm{1 \mathrm{~L}}\) volume of gas weighs \(\mathrm{1.25 \mathrm{~g}}\) 22.4 L volume of gas weighs \(\mathrm{1.25 \times 22.4=28 \mathrm{~g}=}\) Molecular weight of \(\mathrm{\mathrm{N}_{2}}\), \(\mathrm{\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}}\)
CHXI06:STATES OF MATTER
314187
The value of \({\mathrm{P V}}\) for 5.6 L of an ideal gas is ____ \({\mathrm{R T}}\) at NTP.
314170
The density of a gas A is three times that of a gas B. If the molecular mass of \({\mathrm{A}}\) is \({\mathrm{60 \mathrm{~g} \mathrm{~mol}^{-1}}}\), the molecular mass of B is ____ \({\mathrm{\mathrm{g} \mathrm{mol}^{-1}}}\).