Dalton’s Law of Partial Pressure
CHXI06:STATES OF MATTER

314098 \(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).

1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
CHXI06:STATES OF MATTER

314099 Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture

1 \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\)
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where
\(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas
\(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous
mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
4 \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\)
CHXI06:STATES OF MATTER

314122 \(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is

1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
CHXI06:STATES OF MATTER

314123 Assertion :
Wet air is heavier than dry air.
Reason :
The density of dry air is more than density of water.

1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
CHXI06:STATES OF MATTER

314098 \(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).

1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
CHXI06:STATES OF MATTER

314099 Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture

1 \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\)
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where
\(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas
\(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous
mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
4 \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\)
CHXI06:STATES OF MATTER

314122 \(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is

1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
CHXI06:STATES OF MATTER

314123 Assertion :
Wet air is heavier than dry air.
Reason :
The density of dry air is more than density of water.

1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
CHXI06:STATES OF MATTER

314098 \(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).

1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
CHXI06:STATES OF MATTER

314099 Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture

1 \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\)
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where
\(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas
\(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous
mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
4 \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\)
CHXI06:STATES OF MATTER

314122 \(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is

1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
CHXI06:STATES OF MATTER

314123 Assertion :
Wet air is heavier than dry air.
Reason :
The density of dry air is more than density of water.

1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
CHXI06:STATES OF MATTER

314098 \(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).

1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
CHXI06:STATES OF MATTER

314099 Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture

1 \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\)
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where
\(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas
\(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous
mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
4 \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\)
CHXI06:STATES OF MATTER

314122 \(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is

1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
CHXI06:STATES OF MATTER

314123 Assertion :
Wet air is heavier than dry air.
Reason :
The density of dry air is more than density of water.

1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.