314098
\(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).
1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
Explanation:
No. of moles of gas \(\mathrm{1=n_{1}=\dfrac{w_{1}}{m_{1}}=\dfrac{0.45}{60}}\) \({\rm{ = 0}}{\rm{.0075}}\) No. of moles of gas \(\mathrm{2=n_{2}=\dfrac{w_{2}}{m_{2}}=\dfrac{0.22}{44}}\) \(\mathrm{=0.0050}\) Total no. of moles \(\mathrm{=n_{1}+n_{2}}\) \(\mathrm{=0.0075+0.0050=0.0125}\) \(\mathrm{P_{2}(}\) partial pressure of gas 2\(\mathrm{)=\dfrac{0.0050}{0.0125} \times 75}\) \({\rm{ = 30}}\,{\rm{cm}}\,\,{\rm{of}}\,\,{\rm{Hg}}\)
CHXI06:STATES OF MATTER
314099
Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where \(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas \(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
Dalton's law of partial pressure : Partial pressure of gas \(\mathrm{=}\) mole dfraction of gas in gaseous mixture \(\mathrm{\times}\) Total pressure of gaseous mixture. \(\mathrm{\mathrm{p}_{1}=\mathrm{X}_{1} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{2}=\mathrm{X}_{2} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{3}=\mathrm{X}_{3} \mathrm{p}}\) Total pressure, \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\) \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\) Therefore, statement-3 is incorrect.
NEET - 2022
CHXI06:STATES OF MATTER
314122
\(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is
1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
Explanation:
By applying Dalton's law of partial pressure, \(\mathrm{\mathrm{p}_{\mathrm{He}}=\mathrm{X}_{\mathrm{He}} \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{\dfrac{\mathrm{w}}{4}}{\dfrac{\mathrm{w}}{4}+\dfrac{\mathrm{w}}{32}} \times \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{8}{9} \mathrm{P}_{\mathrm{T}}}\)
CHXI06:STATES OF MATTER
314123
Assertion : Wet air is heavier than dry air. Reason : The density of dry air is more than density of water.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXI06:STATES OF MATTER
314098
\(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).
1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
Explanation:
No. of moles of gas \(\mathrm{1=n_{1}=\dfrac{w_{1}}{m_{1}}=\dfrac{0.45}{60}}\) \({\rm{ = 0}}{\rm{.0075}}\) No. of moles of gas \(\mathrm{2=n_{2}=\dfrac{w_{2}}{m_{2}}=\dfrac{0.22}{44}}\) \(\mathrm{=0.0050}\) Total no. of moles \(\mathrm{=n_{1}+n_{2}}\) \(\mathrm{=0.0075+0.0050=0.0125}\) \(\mathrm{P_{2}(}\) partial pressure of gas 2\(\mathrm{)=\dfrac{0.0050}{0.0125} \times 75}\) \({\rm{ = 30}}\,{\rm{cm}}\,\,{\rm{of}}\,\,{\rm{Hg}}\)
CHXI06:STATES OF MATTER
314099
Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where \(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas \(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
Dalton's law of partial pressure : Partial pressure of gas \(\mathrm{=}\) mole dfraction of gas in gaseous mixture \(\mathrm{\times}\) Total pressure of gaseous mixture. \(\mathrm{\mathrm{p}_{1}=\mathrm{X}_{1} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{2}=\mathrm{X}_{2} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{3}=\mathrm{X}_{3} \mathrm{p}}\) Total pressure, \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\) \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\) Therefore, statement-3 is incorrect.
NEET - 2022
CHXI06:STATES OF MATTER
314122
\(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is
1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
Explanation:
By applying Dalton's law of partial pressure, \(\mathrm{\mathrm{p}_{\mathrm{He}}=\mathrm{X}_{\mathrm{He}} \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{\dfrac{\mathrm{w}}{4}}{\dfrac{\mathrm{w}}{4}+\dfrac{\mathrm{w}}{32}} \times \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{8}{9} \mathrm{P}_{\mathrm{T}}}\)
CHXI06:STATES OF MATTER
314123
Assertion : Wet air is heavier than dry air. Reason : The density of dry air is more than density of water.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
314098
\(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).
1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
Explanation:
No. of moles of gas \(\mathrm{1=n_{1}=\dfrac{w_{1}}{m_{1}}=\dfrac{0.45}{60}}\) \({\rm{ = 0}}{\rm{.0075}}\) No. of moles of gas \(\mathrm{2=n_{2}=\dfrac{w_{2}}{m_{2}}=\dfrac{0.22}{44}}\) \(\mathrm{=0.0050}\) Total no. of moles \(\mathrm{=n_{1}+n_{2}}\) \(\mathrm{=0.0075+0.0050=0.0125}\) \(\mathrm{P_{2}(}\) partial pressure of gas 2\(\mathrm{)=\dfrac{0.0050}{0.0125} \times 75}\) \({\rm{ = 30}}\,{\rm{cm}}\,\,{\rm{of}}\,\,{\rm{Hg}}\)
CHXI06:STATES OF MATTER
314099
Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where \(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas \(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
Dalton's law of partial pressure : Partial pressure of gas \(\mathrm{=}\) mole dfraction of gas in gaseous mixture \(\mathrm{\times}\) Total pressure of gaseous mixture. \(\mathrm{\mathrm{p}_{1}=\mathrm{X}_{1} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{2}=\mathrm{X}_{2} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{3}=\mathrm{X}_{3} \mathrm{p}}\) Total pressure, \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\) \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\) Therefore, statement-3 is incorrect.
NEET - 2022
CHXI06:STATES OF MATTER
314122
\(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is
1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
Explanation:
By applying Dalton's law of partial pressure, \(\mathrm{\mathrm{p}_{\mathrm{He}}=\mathrm{X}_{\mathrm{He}} \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{\dfrac{\mathrm{w}}{4}}{\dfrac{\mathrm{w}}{4}+\dfrac{\mathrm{w}}{32}} \times \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{8}{9} \mathrm{P}_{\mathrm{T}}}\)
CHXI06:STATES OF MATTER
314123
Assertion : Wet air is heavier than dry air. Reason : The density of dry air is more than density of water.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
314098
\(\mathrm{0.45 \mathrm{gm}}\) of a gas \(\mathrm{A}\) of molecular weight 60 and 0.22 gm of a gas B molecular weight 44 exert a total pressure of \(\mathrm{75 \mathrm{~cm}}\) of mercury. Calculate the partial pressure of the gas \(\mathrm{\mathrm{B}}\).
1 \(\mathrm{30 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
2 \(\mathrm{20 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
3 \(\mathrm{10 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
4 \(\mathrm{40 \mathrm{~cm}}\) of \(\mathrm{\mathrm{Hg}}\)
Explanation:
No. of moles of gas \(\mathrm{1=n_{1}=\dfrac{w_{1}}{m_{1}}=\dfrac{0.45}{60}}\) \({\rm{ = 0}}{\rm{.0075}}\) No. of moles of gas \(\mathrm{2=n_{2}=\dfrac{w_{2}}{m_{2}}=\dfrac{0.22}{44}}\) \(\mathrm{=0.0050}\) Total no. of moles \(\mathrm{=n_{1}+n_{2}}\) \(\mathrm{=0.0075+0.0050=0.0125}\) \(\mathrm{P_{2}(}\) partial pressure of gas 2\(\mathrm{)=\dfrac{0.0050}{0.0125} \times 75}\) \({\rm{ = 30}}\,{\rm{cm}}\,\,{\rm{of}}\,\,{\rm{Hg}}\)
CHXI06:STATES OF MATTER
314099
Which one is not correct mathematical equation for Dalton's Law of partial pressure ? Here \(\mathrm{p=}\) total pressure of gaseous mixture
2 \(\mathrm{\mathrm{p}_{\mathrm{i}}=\chi_{\mathrm{i}} \mathrm{p}}\), where \(\mathrm{p_{i}=}\) partial pressure of \(\mathrm{i^{\text {th }}}\) gas \(\mathrm{\chi_{i}=}\) mole fraction of \(\mathrm{i^{\text {th }}}\) gas in gaseous mixture
3 \({{\rm{p}}_{\rm{i}}}{\rm{ = }}{{\rm{\chi }}_{\rm{i}}}{\rm{p}}_{\rm{i}}^{\rm{^\circ }}\), where \(\mathrm{\chi_{\mathrm{i}},=}\) mole fraction of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in gaseous mixture; \(\mathrm{\mathrm{p}_{\mathrm{i}}{ }^{\circ}=}\) pressure of \(\mathrm{\mathrm{i}^{\text {th }}}\) gas in pure state
Dalton's law of partial pressure : Partial pressure of gas \(\mathrm{=}\) mole dfraction of gas in gaseous mixture \(\mathrm{\times}\) Total pressure of gaseous mixture. \(\mathrm{\mathrm{p}_{1}=\mathrm{X}_{1} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{2}=\mathrm{X}_{2} \mathrm{p}}\) \(\mathrm{\mathrm{p}_{3}=\mathrm{X}_{3} \mathrm{p}}\) Total pressure, \(\mathrm{\mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}}\) \(\mathrm{\mathrm{p}=\mathrm{n}_{1} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{2} \dfrac{\mathrm{RT}}{\mathrm{V}}+\mathrm{n}_{3} \dfrac{\mathrm{RT}}{\mathrm{V}}}\) Therefore, statement-3 is incorrect.
NEET - 2022
CHXI06:STATES OF MATTER
314122
\(\mathrm{\mathrm{O}_{2}}\) and \(\mathrm{\mathrm{He}}\) are taken in equal weights in a vessel. The pressure exerted by Helium in the mixture is
1 \({\frac{{\rm{1}}}{{\rm{8}}}^{{\rm{th}}}}\)of total pressure
2 \({\frac{{\rm{1}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
3 \({\frac{{\rm{2}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
4 \({\frac{{\rm{8}}}{{\rm{9}}}^{{\rm{th}}}}\)of total pressure
Explanation:
By applying Dalton's law of partial pressure, \(\mathrm{\mathrm{p}_{\mathrm{He}}=\mathrm{X}_{\mathrm{He}} \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{\dfrac{\mathrm{w}}{4}}{\dfrac{\mathrm{w}}{4}+\dfrac{\mathrm{w}}{32}} \times \mathrm{P}_{\mathrm{T}}}\) \(\mathrm{=\dfrac{8}{9} \mathrm{P}_{\mathrm{T}}}\)
CHXI06:STATES OF MATTER
314123
Assertion : Wet air is heavier than dry air. Reason : The density of dry air is more than density of water.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.