Behaviour of Real Gases
CHXI06:STATES OF MATTER

314084 A gas obeys the equation of state \({\rm{P(V - b) = }}\) RT. The parameter ' \(\mathrm{b}\) ' is a constant. The slope of the isochore is

1 zero
2 -ve
3 \(\mathrm{\dfrac{R}{P}}\)
4 \(\mathrm{\dfrac{R}{V-b}}\)
CHXI06:STATES OF MATTER

314085 van der Waal's equation for a gas is stated as, \(\mathrm{P=\dfrac{n R T}{V-n b}-a\left(\dfrac{n}{V}\right)^{2}}\). This equation reduces to the perfect gas equation, \(\mathrm{P=\dfrac{n R T}{V}}\) when,

1 temperature is sufficiently high and pressure is low.
2 temperature is sufficiently low and pressure is high.
3 both temperature and pressure are very high.
4 both temperature and pressure are very low.
CHXI06:STATES OF MATTER

314086 The compressibility factor for one mole of a van der Waal's gas at \(\mathrm{0^{\circ} \mathrm{C}}\) and \(\mathrm{100 \mathrm{~atm}}\) pressure is found to be 0.5 Assume that the volume of gas molecule is negligible. Calculate the van der Waals constant ' \(\mathrm{a}\) '.

1 \({\rm{1}}{\rm{.253\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
2 \({\rm{12}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
3 \({\rm{0}}{\rm{.125\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
4 \({\rm{22}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
CHXI06:STATES OF MATTER

314087 Pressure exerted by 1 mole of methane in a 0.25 litre container at \(\mathrm{300 \mathrm{~K}}\) using van der Waal's equation (given, \(\mathrm{\mathrm{a}=2.253 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2}}\), \(\mathrm{b=0.0428}\) lit mol \(\mathrm{\left.^{-1}\right)}\) is

1 \(\mathrm{82.82 \mathrm{~atm}}\)
2 \(\mathrm{152.51 \mathrm{~atm}}\)
3 \(\mathrm{190.52 \mathrm{~atm}}\)
4 \(\mathrm{70.52 \mathrm{~atm}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI06:STATES OF MATTER

314084 A gas obeys the equation of state \({\rm{P(V - b) = }}\) RT. The parameter ' \(\mathrm{b}\) ' is a constant. The slope of the isochore is

1 zero
2 -ve
3 \(\mathrm{\dfrac{R}{P}}\)
4 \(\mathrm{\dfrac{R}{V-b}}\)
CHXI06:STATES OF MATTER

314085 van der Waal's equation for a gas is stated as, \(\mathrm{P=\dfrac{n R T}{V-n b}-a\left(\dfrac{n}{V}\right)^{2}}\). This equation reduces to the perfect gas equation, \(\mathrm{P=\dfrac{n R T}{V}}\) when,

1 temperature is sufficiently high and pressure is low.
2 temperature is sufficiently low and pressure is high.
3 both temperature and pressure are very high.
4 both temperature and pressure are very low.
CHXI06:STATES OF MATTER

314086 The compressibility factor for one mole of a van der Waal's gas at \(\mathrm{0^{\circ} \mathrm{C}}\) and \(\mathrm{100 \mathrm{~atm}}\) pressure is found to be 0.5 Assume that the volume of gas molecule is negligible. Calculate the van der Waals constant ' \(\mathrm{a}\) '.

1 \({\rm{1}}{\rm{.253\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
2 \({\rm{12}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
3 \({\rm{0}}{\rm{.125\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
4 \({\rm{22}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
CHXI06:STATES OF MATTER

314087 Pressure exerted by 1 mole of methane in a 0.25 litre container at \(\mathrm{300 \mathrm{~K}}\) using van der Waal's equation (given, \(\mathrm{\mathrm{a}=2.253 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2}}\), \(\mathrm{b=0.0428}\) lit mol \(\mathrm{\left.^{-1}\right)}\) is

1 \(\mathrm{82.82 \mathrm{~atm}}\)
2 \(\mathrm{152.51 \mathrm{~atm}}\)
3 \(\mathrm{190.52 \mathrm{~atm}}\)
4 \(\mathrm{70.52 \mathrm{~atm}}\)
CHXI06:STATES OF MATTER

314084 A gas obeys the equation of state \({\rm{P(V - b) = }}\) RT. The parameter ' \(\mathrm{b}\) ' is a constant. The slope of the isochore is

1 zero
2 -ve
3 \(\mathrm{\dfrac{R}{P}}\)
4 \(\mathrm{\dfrac{R}{V-b}}\)
CHXI06:STATES OF MATTER

314085 van der Waal's equation for a gas is stated as, \(\mathrm{P=\dfrac{n R T}{V-n b}-a\left(\dfrac{n}{V}\right)^{2}}\). This equation reduces to the perfect gas equation, \(\mathrm{P=\dfrac{n R T}{V}}\) when,

1 temperature is sufficiently high and pressure is low.
2 temperature is sufficiently low and pressure is high.
3 both temperature and pressure are very high.
4 both temperature and pressure are very low.
CHXI06:STATES OF MATTER

314086 The compressibility factor for one mole of a van der Waal's gas at \(\mathrm{0^{\circ} \mathrm{C}}\) and \(\mathrm{100 \mathrm{~atm}}\) pressure is found to be 0.5 Assume that the volume of gas molecule is negligible. Calculate the van der Waals constant ' \(\mathrm{a}\) '.

1 \({\rm{1}}{\rm{.253\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
2 \({\rm{12}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
3 \({\rm{0}}{\rm{.125\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
4 \({\rm{22}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
CHXI06:STATES OF MATTER

314087 Pressure exerted by 1 mole of methane in a 0.25 litre container at \(\mathrm{300 \mathrm{~K}}\) using van der Waal's equation (given, \(\mathrm{\mathrm{a}=2.253 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2}}\), \(\mathrm{b=0.0428}\) lit mol \(\mathrm{\left.^{-1}\right)}\) is

1 \(\mathrm{82.82 \mathrm{~atm}}\)
2 \(\mathrm{152.51 \mathrm{~atm}}\)
3 \(\mathrm{190.52 \mathrm{~atm}}\)
4 \(\mathrm{70.52 \mathrm{~atm}}\)
CHXI06:STATES OF MATTER

314084 A gas obeys the equation of state \({\rm{P(V - b) = }}\) RT. The parameter ' \(\mathrm{b}\) ' is a constant. The slope of the isochore is

1 zero
2 -ve
3 \(\mathrm{\dfrac{R}{P}}\)
4 \(\mathrm{\dfrac{R}{V-b}}\)
CHXI06:STATES OF MATTER

314085 van der Waal's equation for a gas is stated as, \(\mathrm{P=\dfrac{n R T}{V-n b}-a\left(\dfrac{n}{V}\right)^{2}}\). This equation reduces to the perfect gas equation, \(\mathrm{P=\dfrac{n R T}{V}}\) when,

1 temperature is sufficiently high and pressure is low.
2 temperature is sufficiently low and pressure is high.
3 both temperature and pressure are very high.
4 both temperature and pressure are very low.
CHXI06:STATES OF MATTER

314086 The compressibility factor for one mole of a van der Waal's gas at \(\mathrm{0^{\circ} \mathrm{C}}\) and \(\mathrm{100 \mathrm{~atm}}\) pressure is found to be 0.5 Assume that the volume of gas molecule is negligible. Calculate the van der Waals constant ' \(\mathrm{a}\) '.

1 \({\rm{1}}{\rm{.253\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
2 \({\rm{12}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
3 \({\rm{0}}{\rm{.125\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
4 \({\rm{22}}{\rm{.53\;atm}}\,{\rm{li}}{{\rm{t}}^{\rm{2}}}{\rm{\;mo}}{{\rm{l}}^{{\rm{ - 2}}}}\)
CHXI06:STATES OF MATTER

314087 Pressure exerted by 1 mole of methane in a 0.25 litre container at \(\mathrm{300 \mathrm{~K}}\) using van der Waal's equation (given, \(\mathrm{\mathrm{a}=2.253 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2}}\), \(\mathrm{b=0.0428}\) lit mol \(\mathrm{\left.^{-1}\right)}\) is

1 \(\mathrm{82.82 \mathrm{~atm}}\)
2 \(\mathrm{152.51 \mathrm{~atm}}\)
3 \(\mathrm{190.52 \mathrm{~atm}}\)
4 \(\mathrm{70.52 \mathrm{~atm}}\)