Heat of Reaction
CHXI06:THERMODYNAMICS

369455 In the reaction
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\(\Delta \mathrm{H}=40 \mathrm{~kJ} ; \Delta \mathrm{H}\) represents :

1 Heat of formation
2 Heat of combustion
3 Heat of neutralisation
4 Heat of reaction
CHXI06:THERMODYNAMICS

369456 Which of the following statements / relationship is not correct?

1 In an exothermic reaction, the enthalpy of products is less than that of the reactants.
2 \(\Delta \mathrm{H}_{\text {fusion }}=\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vapourisation }}\)
3 A reaction for which \(\Delta \mathrm{H}^{0} < 0\) and \(\Delta \mathrm{S}>0\), is possible at all temperatures
4 \(\Delta \mathrm{H}\) is less than \(\Delta \mathrm{E}\) for combustion of carbon to carbon dioxide
CHXI06:THERMODYNAMICS

369457 For the reaction,
\(\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2}(\mathrm{O})_{(\mathrm{l})}\)
at constant temperature, \(\Delta {\text{H}} - \Delta {\text{E}}\) is

1 \({\text{RT}}\)
2 \( - 3{\text{RT}}\)
3 \(3{\text{RT}}\)
4 \( - {\text{RT}}\)
CHXI06:THERMODYNAMICS

369458 Given
(A) \(2{\text{C}}{{\text{O}}_{({\text{g}})}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \(2{\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _1} = - {\text{x}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
(B) \({{\text{C}}_{{\text{(graphitc) }}}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \({\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _2} = - {\text{y}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
The \(\Delta {\text{H}}^\circ \) for the reaction
\({{\text{C}}_{{\text{(graphite) }}}} + \frac{1}{2}{{\text{O}}_{2(\;{\text{g}})}} \to {\text{C}}{{\text{O}}_{({\text{g}})}}\) is

1 \(\frac{{{\text{x}} + 2{\text{y}}}}{2}\)
2 \(\frac{{{\text{x}} - 2{\text{y}}}}{2}\)
3 \(\frac{{2{\text{x}} - {\text{y}}}}{2}\)
4 \(2{\text{y}} - {\text{x}}\)
CHXI06:THERMODYNAMICS

369459 Identify the invalid equation

1 \(\mathrm{\Delta \mathrm{H}=\sum \mathrm{H}_{\text {products }}-\sum \mathrm{H}_{\text {reactants }}}\)
2 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{p} \Delta \mathrm{V}}\)
3 \(\mathrm{\Delta \mathrm{H}_{(\text {reaction) }}^{\circ}=\sum \mathrm{H}_{(\text {product bonds) }}^{\circ}-\sum \mathrm{H}_{\text {(reactant bonds) }}^{\circ}}\)
4 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}}\)
CHXI06:THERMODYNAMICS

369455 In the reaction
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\(\Delta \mathrm{H}=40 \mathrm{~kJ} ; \Delta \mathrm{H}\) represents :

1 Heat of formation
2 Heat of combustion
3 Heat of neutralisation
4 Heat of reaction
CHXI06:THERMODYNAMICS

369456 Which of the following statements / relationship is not correct?

1 In an exothermic reaction, the enthalpy of products is less than that of the reactants.
2 \(\Delta \mathrm{H}_{\text {fusion }}=\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vapourisation }}\)
3 A reaction for which \(\Delta \mathrm{H}^{0} < 0\) and \(\Delta \mathrm{S}>0\), is possible at all temperatures
4 \(\Delta \mathrm{H}\) is less than \(\Delta \mathrm{E}\) for combustion of carbon to carbon dioxide
CHXI06:THERMODYNAMICS

369457 For the reaction,
\(\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2}(\mathrm{O})_{(\mathrm{l})}\)
at constant temperature, \(\Delta {\text{H}} - \Delta {\text{E}}\) is

1 \({\text{RT}}\)
2 \( - 3{\text{RT}}\)
3 \(3{\text{RT}}\)
4 \( - {\text{RT}}\)
CHXI06:THERMODYNAMICS

369458 Given
(A) \(2{\text{C}}{{\text{O}}_{({\text{g}})}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \(2{\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _1} = - {\text{x}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
(B) \({{\text{C}}_{{\text{(graphitc) }}}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \({\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _2} = - {\text{y}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
The \(\Delta {\text{H}}^\circ \) for the reaction
\({{\text{C}}_{{\text{(graphite) }}}} + \frac{1}{2}{{\text{O}}_{2(\;{\text{g}})}} \to {\text{C}}{{\text{O}}_{({\text{g}})}}\) is

1 \(\frac{{{\text{x}} + 2{\text{y}}}}{2}\)
2 \(\frac{{{\text{x}} - 2{\text{y}}}}{2}\)
3 \(\frac{{2{\text{x}} - {\text{y}}}}{2}\)
4 \(2{\text{y}} - {\text{x}}\)
CHXI06:THERMODYNAMICS

369459 Identify the invalid equation

1 \(\mathrm{\Delta \mathrm{H}=\sum \mathrm{H}_{\text {products }}-\sum \mathrm{H}_{\text {reactants }}}\)
2 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{p} \Delta \mathrm{V}}\)
3 \(\mathrm{\Delta \mathrm{H}_{(\text {reaction) }}^{\circ}=\sum \mathrm{H}_{(\text {product bonds) }}^{\circ}-\sum \mathrm{H}_{\text {(reactant bonds) }}^{\circ}}\)
4 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}}\)
CHXI06:THERMODYNAMICS

369455 In the reaction
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\(\Delta \mathrm{H}=40 \mathrm{~kJ} ; \Delta \mathrm{H}\) represents :

1 Heat of formation
2 Heat of combustion
3 Heat of neutralisation
4 Heat of reaction
CHXI06:THERMODYNAMICS

369456 Which of the following statements / relationship is not correct?

1 In an exothermic reaction, the enthalpy of products is less than that of the reactants.
2 \(\Delta \mathrm{H}_{\text {fusion }}=\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vapourisation }}\)
3 A reaction for which \(\Delta \mathrm{H}^{0} < 0\) and \(\Delta \mathrm{S}>0\), is possible at all temperatures
4 \(\Delta \mathrm{H}\) is less than \(\Delta \mathrm{E}\) for combustion of carbon to carbon dioxide
CHXI06:THERMODYNAMICS

369457 For the reaction,
\(\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2}(\mathrm{O})_{(\mathrm{l})}\)
at constant temperature, \(\Delta {\text{H}} - \Delta {\text{E}}\) is

1 \({\text{RT}}\)
2 \( - 3{\text{RT}}\)
3 \(3{\text{RT}}\)
4 \( - {\text{RT}}\)
CHXI06:THERMODYNAMICS

369458 Given
(A) \(2{\text{C}}{{\text{O}}_{({\text{g}})}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \(2{\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _1} = - {\text{x}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
(B) \({{\text{C}}_{{\text{(graphitc) }}}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \({\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _2} = - {\text{y}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
The \(\Delta {\text{H}}^\circ \) for the reaction
\({{\text{C}}_{{\text{(graphite) }}}} + \frac{1}{2}{{\text{O}}_{2(\;{\text{g}})}} \to {\text{C}}{{\text{O}}_{({\text{g}})}}\) is

1 \(\frac{{{\text{x}} + 2{\text{y}}}}{2}\)
2 \(\frac{{{\text{x}} - 2{\text{y}}}}{2}\)
3 \(\frac{{2{\text{x}} - {\text{y}}}}{2}\)
4 \(2{\text{y}} - {\text{x}}\)
CHXI06:THERMODYNAMICS

369459 Identify the invalid equation

1 \(\mathrm{\Delta \mathrm{H}=\sum \mathrm{H}_{\text {products }}-\sum \mathrm{H}_{\text {reactants }}}\)
2 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{p} \Delta \mathrm{V}}\)
3 \(\mathrm{\Delta \mathrm{H}_{(\text {reaction) }}^{\circ}=\sum \mathrm{H}_{(\text {product bonds) }}^{\circ}-\sum \mathrm{H}_{\text {(reactant bonds) }}^{\circ}}\)
4 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}}\)
CHXI06:THERMODYNAMICS

369455 In the reaction
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\(\Delta \mathrm{H}=40 \mathrm{~kJ} ; \Delta \mathrm{H}\) represents :

1 Heat of formation
2 Heat of combustion
3 Heat of neutralisation
4 Heat of reaction
CHXI06:THERMODYNAMICS

369456 Which of the following statements / relationship is not correct?

1 In an exothermic reaction, the enthalpy of products is less than that of the reactants.
2 \(\Delta \mathrm{H}_{\text {fusion }}=\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vapourisation }}\)
3 A reaction for which \(\Delta \mathrm{H}^{0} < 0\) and \(\Delta \mathrm{S}>0\), is possible at all temperatures
4 \(\Delta \mathrm{H}\) is less than \(\Delta \mathrm{E}\) for combustion of carbon to carbon dioxide
CHXI06:THERMODYNAMICS

369457 For the reaction,
\(\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2}(\mathrm{O})_{(\mathrm{l})}\)
at constant temperature, \(\Delta {\text{H}} - \Delta {\text{E}}\) is

1 \({\text{RT}}\)
2 \( - 3{\text{RT}}\)
3 \(3{\text{RT}}\)
4 \( - {\text{RT}}\)
CHXI06:THERMODYNAMICS

369458 Given
(A) \(2{\text{C}}{{\text{O}}_{({\text{g}})}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \(2{\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _1} = - {\text{x}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
(B) \({{\text{C}}_{{\text{(graphitc) }}}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \({\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _2} = - {\text{y}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
The \(\Delta {\text{H}}^\circ \) for the reaction
\({{\text{C}}_{{\text{(graphite) }}}} + \frac{1}{2}{{\text{O}}_{2(\;{\text{g}})}} \to {\text{C}}{{\text{O}}_{({\text{g}})}}\) is

1 \(\frac{{{\text{x}} + 2{\text{y}}}}{2}\)
2 \(\frac{{{\text{x}} - 2{\text{y}}}}{2}\)
3 \(\frac{{2{\text{x}} - {\text{y}}}}{2}\)
4 \(2{\text{y}} - {\text{x}}\)
CHXI06:THERMODYNAMICS

369459 Identify the invalid equation

1 \(\mathrm{\Delta \mathrm{H}=\sum \mathrm{H}_{\text {products }}-\sum \mathrm{H}_{\text {reactants }}}\)
2 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{p} \Delta \mathrm{V}}\)
3 \(\mathrm{\Delta \mathrm{H}_{(\text {reaction) }}^{\circ}=\sum \mathrm{H}_{(\text {product bonds) }}^{\circ}-\sum \mathrm{H}_{\text {(reactant bonds) }}^{\circ}}\)
4 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}}\)
CHXI06:THERMODYNAMICS

369455 In the reaction
\(\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\(\Delta \mathrm{H}=40 \mathrm{~kJ} ; \Delta \mathrm{H}\) represents :

1 Heat of formation
2 Heat of combustion
3 Heat of neutralisation
4 Heat of reaction
CHXI06:THERMODYNAMICS

369456 Which of the following statements / relationship is not correct?

1 In an exothermic reaction, the enthalpy of products is less than that of the reactants.
2 \(\Delta \mathrm{H}_{\text {fusion }}=\Delta \mathrm{H}_{\text {sublimation }}-\Delta \mathrm{H}_{\text {vapourisation }}\)
3 A reaction for which \(\Delta \mathrm{H}^{0} < 0\) and \(\Delta \mathrm{S}>0\), is possible at all temperatures
4 \(\Delta \mathrm{H}\) is less than \(\Delta \mathrm{E}\) for combustion of carbon to carbon dioxide
CHXI06:THERMODYNAMICS

369457 For the reaction,
\(\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2}(\mathrm{O})_{(\mathrm{l})}\)
at constant temperature, \(\Delta {\text{H}} - \Delta {\text{E}}\) is

1 \({\text{RT}}\)
2 \( - 3{\text{RT}}\)
3 \(3{\text{RT}}\)
4 \( - {\text{RT}}\)
CHXI06:THERMODYNAMICS

369458 Given
(A) \(2{\text{C}}{{\text{O}}_{({\text{g}})}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \(2{\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _1} = - {\text{x}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
(B) \({{\text{C}}_{{\text{(graphitc) }}}} + {{\text{O}}_{2(\;{\text{g}})}} \to \) \({\text{C}}{{\text{O}}_{2(\;{\text{g}})}}\Delta {\text{H}}{^\circ _2} = - {\text{y}}\,\,{\text{kJ}}\,\,{\text{mo}}{{\text{l}}^{ - 1}}\)
The \(\Delta {\text{H}}^\circ \) for the reaction
\({{\text{C}}_{{\text{(graphite) }}}} + \frac{1}{2}{{\text{O}}_{2(\;{\text{g}})}} \to {\text{C}}{{\text{O}}_{({\text{g}})}}\) is

1 \(\frac{{{\text{x}} + 2{\text{y}}}}{2}\)
2 \(\frac{{{\text{x}} - 2{\text{y}}}}{2}\)
3 \(\frac{{2{\text{x}} - {\text{y}}}}{2}\)
4 \(2{\text{y}} - {\text{x}}\)
CHXI06:THERMODYNAMICS

369459 Identify the invalid equation

1 \(\mathrm{\Delta \mathrm{H}=\sum \mathrm{H}_{\text {products }}-\sum \mathrm{H}_{\text {reactants }}}\)
2 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{p} \Delta \mathrm{V}}\)
3 \(\mathrm{\Delta \mathrm{H}_{(\text {reaction) }}^{\circ}=\sum \mathrm{H}_{(\text {product bonds) }}^{\circ}-\sum \mathrm{H}_{\text {(reactant bonds) }}^{\circ}}\)
4 \(\mathrm{\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}}\)