369538
If the bond energies of \(\mathrm{\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}}\) and \(\mathrm{\mathrm{H}-\mathrm{Br}}\) are 433, 192 and \(\mathrm{364 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively, then \(\mathrm{\Delta \mathrm{H}^{\circ}}\) for the reaction:
\(\mathrm{\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}}\) is
369540 The bond dissociation energies of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y}\) are in the ratio of \(\mathrm{1: 0.5: 1 . \Delta H}\) for the formation of \(\mathrm{X Y}\) is \(\mathrm{-200 \mathrm{~kJ} \mathrm{~mol}^{-1}}\). The bond dissociation energy of \(\mathrm{X_{2}}\) will be
369542
The enthalpy changes for the following processes are listed below
\({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2Cl(g),}}\quad {\rm{242}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2I(g),151}}{\rm{.0\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{ICl(g)}} \to {\rm{I(g) + Cl(g),211}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;s)}} \to {{\rm{I}}_{\rm{2}}}{\rm{(\;g),}}\quad {\rm{62}}{\rm{.76\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
Given that the standard states for iodine and chlorine are \(\mathrm{\mathrm{I}_{2}(\mathrm{~s})}\) and \(\mathrm{\mathrm{Cl}_{2}(\mathrm{~g})}\), the standard enthalpy of formation for \(\mathrm{\mathrm{ICl}(\mathrm{g})}\) is
369538
If the bond energies of \(\mathrm{\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}}\) and \(\mathrm{\mathrm{H}-\mathrm{Br}}\) are 433, 192 and \(\mathrm{364 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively, then \(\mathrm{\Delta \mathrm{H}^{\circ}}\) for the reaction:
\(\mathrm{\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}}\) is
369540 The bond dissociation energies of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y}\) are in the ratio of \(\mathrm{1: 0.5: 1 . \Delta H}\) for the formation of \(\mathrm{X Y}\) is \(\mathrm{-200 \mathrm{~kJ} \mathrm{~mol}^{-1}}\). The bond dissociation energy of \(\mathrm{X_{2}}\) will be
369542
The enthalpy changes for the following processes are listed below
\({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2Cl(g),}}\quad {\rm{242}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2I(g),151}}{\rm{.0\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{ICl(g)}} \to {\rm{I(g) + Cl(g),211}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;s)}} \to {{\rm{I}}_{\rm{2}}}{\rm{(\;g),}}\quad {\rm{62}}{\rm{.76\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
Given that the standard states for iodine and chlorine are \(\mathrm{\mathrm{I}_{2}(\mathrm{~s})}\) and \(\mathrm{\mathrm{Cl}_{2}(\mathrm{~g})}\), the standard enthalpy of formation for \(\mathrm{\mathrm{ICl}(\mathrm{g})}\) is
369538
If the bond energies of \(\mathrm{\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}}\) and \(\mathrm{\mathrm{H}-\mathrm{Br}}\) are 433, 192 and \(\mathrm{364 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively, then \(\mathrm{\Delta \mathrm{H}^{\circ}}\) for the reaction:
\(\mathrm{\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}}\) is
369540 The bond dissociation energies of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y}\) are in the ratio of \(\mathrm{1: 0.5: 1 . \Delta H}\) for the formation of \(\mathrm{X Y}\) is \(\mathrm{-200 \mathrm{~kJ} \mathrm{~mol}^{-1}}\). The bond dissociation energy of \(\mathrm{X_{2}}\) will be
369542
The enthalpy changes for the following processes are listed below
\({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2Cl(g),}}\quad {\rm{242}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2I(g),151}}{\rm{.0\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{ICl(g)}} \to {\rm{I(g) + Cl(g),211}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;s)}} \to {{\rm{I}}_{\rm{2}}}{\rm{(\;g),}}\quad {\rm{62}}{\rm{.76\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
Given that the standard states for iodine and chlorine are \(\mathrm{\mathrm{I}_{2}(\mathrm{~s})}\) and \(\mathrm{\mathrm{Cl}_{2}(\mathrm{~g})}\), the standard enthalpy of formation for \(\mathrm{\mathrm{ICl}(\mathrm{g})}\) is
369538
If the bond energies of \(\mathrm{\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}}\) and \(\mathrm{\mathrm{H}-\mathrm{Br}}\) are 433, 192 and \(\mathrm{364 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively, then \(\mathrm{\Delta \mathrm{H}^{\circ}}\) for the reaction:
\(\mathrm{\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}}\) is
369540 The bond dissociation energies of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y}\) are in the ratio of \(\mathrm{1: 0.5: 1 . \Delta H}\) for the formation of \(\mathrm{X Y}\) is \(\mathrm{-200 \mathrm{~kJ} \mathrm{~mol}^{-1}}\). The bond dissociation energy of \(\mathrm{X_{2}}\) will be
369542
The enthalpy changes for the following processes are listed below
\({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2Cl(g),}}\quad {\rm{242}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2I(g),151}}{\rm{.0\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{ICl(g)}} \to {\rm{I(g) + Cl(g),211}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;s)}} \to {{\rm{I}}_{\rm{2}}}{\rm{(\;g),}}\quad {\rm{62}}{\rm{.76\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
Given that the standard states for iodine and chlorine are \(\mathrm{\mathrm{I}_{2}(\mathrm{~s})}\) and \(\mathrm{\mathrm{Cl}_{2}(\mathrm{~g})}\), the standard enthalpy of formation for \(\mathrm{\mathrm{ICl}(\mathrm{g})}\) is
369538
If the bond energies of \(\mathrm{\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}}\) and \(\mathrm{\mathrm{H}-\mathrm{Br}}\) are 433, 192 and \(\mathrm{364 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively, then \(\mathrm{\Delta \mathrm{H}^{\circ}}\) for the reaction:
\(\mathrm{\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}}\) is
369540 The bond dissociation energies of \(\mathrm{X_{2}, Y_{2}}\) and \(\mathrm{X Y}\) are in the ratio of \(\mathrm{1: 0.5: 1 . \Delta H}\) for the formation of \(\mathrm{X Y}\) is \(\mathrm{-200 \mathrm{~kJ} \mathrm{~mol}^{-1}}\). The bond dissociation energy of \(\mathrm{X_{2}}\) will be
369542
The enthalpy changes for the following processes are listed below
\({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2Cl(g),}}\quad {\rm{242}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;g)}} \to {\rm{2I(g),151}}{\rm{.0\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({\rm{ICl(g)}} \to {\rm{I(g) + Cl(g),211}}{\rm{.3\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
\({{\rm{I}}_{\rm{2}}}{\rm{(\;s)}} \to {{\rm{I}}_{\rm{2}}}{\rm{(\;g),}}\quad {\rm{62}}{\rm{.76\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
Given that the standard states for iodine and chlorine are \(\mathrm{\mathrm{I}_{2}(\mathrm{~s})}\) and \(\mathrm{\mathrm{Cl}_{2}(\mathrm{~g})}\), the standard enthalpy of formation for \(\mathrm{\mathrm{ICl}(\mathrm{g})}\) is