Heat of Reaction
CHXI06:THERMODYNAMICS

369530 Energy required to dissociate \(\mathrm{4 \mathrm{~g}}\) of gaseous hydrogen into free gaseous atoms is \(\mathrm{208 \mathrm{kcal}}\) at \(\mathrm{25^{\circ} \mathrm{C}}\). The bond energy of \(\mathrm{\mathrm{H}-\mathrm{H}}\) bond will be

1 \(\mathrm{104 \mathrm{kcal}}\)
2 \(\mathrm{10.4 \mathrm{kcal}}\)
3 \(\mathrm{1040 \mathrm{kcal}}\)
4 \(\mathrm{-104 \mathrm{kcal}}\)
CHXI06:THERMODYNAMICS

369531 What will be the enthalpy change for the following reaction?
\({{\rm{H}}_{\rm{2}}}(\;{\rm{g}}){\rm{ + B}}{{\rm{r}}_{\rm{2}}}(\;{\rm{g}}) \to {\rm{2HBr}}({\rm{g}})\)
Given that Bond energy of \(\mathrm{\mathrm{H}_{2}, \mathrm{Br}_{2}}\) and \(\mathrm{\mathrm{HBr}}\) is \(\mathrm{435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{368 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively.

1 \({\rm{ + 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{ - 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{ + 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{ - 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369532 The enthalpy changes at \(\mathrm{298 \mathrm{~K}}\) in successive breaking of \(\mathrm{\mathrm{O}-\mathrm{H}}\) bonds in \(\mathrm{\mathrm{HOH}}\) are
\(\mathrm{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{OH}_{(\mathrm{g})} ; \Delta \mathrm{H}=498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\mathrm{OH}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} ; \Delta \mathrm{H}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The bond enthalpy of the \(\mathrm{\mathrm{O}-\mathrm{H}}\) bond is

1 \(\mathrm{498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{463 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{70 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369533 The standard heat of formation values of \(\mathrm{\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}_{(\mathrm{s})}}\), and \(\mathrm{\mathrm{F}(\mathrm{g})}\) are \(\mathrm{-1100,275}\), and 80 \(\mathrm{\mathrm{kJ} / \mathrm{mol}}\), respectively. Then the average \(\mathrm{\mathrm{S}-\mathrm{F}}\) bond energy in \(\mathrm{\mathrm{SF}_{6}}\) is

1 \(\mathrm{301 \mathrm{~kJ} / \mathrm{mol}}\)
2 \(\mathrm{320 \mathrm{~kJ} / \mathrm{mol}}\)
3 \(\mathrm{309 \mathrm{~kJ} / \mathrm{mol}}\)
4 \(\mathrm{280 \mathrm{~kJ} / \mathrm{mol}}\)
CHXI06:THERMODYNAMICS

369530 Energy required to dissociate \(\mathrm{4 \mathrm{~g}}\) of gaseous hydrogen into free gaseous atoms is \(\mathrm{208 \mathrm{kcal}}\) at \(\mathrm{25^{\circ} \mathrm{C}}\). The bond energy of \(\mathrm{\mathrm{H}-\mathrm{H}}\) bond will be

1 \(\mathrm{104 \mathrm{kcal}}\)
2 \(\mathrm{10.4 \mathrm{kcal}}\)
3 \(\mathrm{1040 \mathrm{kcal}}\)
4 \(\mathrm{-104 \mathrm{kcal}}\)
CHXI06:THERMODYNAMICS

369531 What will be the enthalpy change for the following reaction?
\({{\rm{H}}_{\rm{2}}}(\;{\rm{g}}){\rm{ + B}}{{\rm{r}}_{\rm{2}}}(\;{\rm{g}}) \to {\rm{2HBr}}({\rm{g}})\)
Given that Bond energy of \(\mathrm{\mathrm{H}_{2}, \mathrm{Br}_{2}}\) and \(\mathrm{\mathrm{HBr}}\) is \(\mathrm{435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{368 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively.

1 \({\rm{ + 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{ - 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{ + 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{ - 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369532 The enthalpy changes at \(\mathrm{298 \mathrm{~K}}\) in successive breaking of \(\mathrm{\mathrm{O}-\mathrm{H}}\) bonds in \(\mathrm{\mathrm{HOH}}\) are
\(\mathrm{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{OH}_{(\mathrm{g})} ; \Delta \mathrm{H}=498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\mathrm{OH}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} ; \Delta \mathrm{H}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The bond enthalpy of the \(\mathrm{\mathrm{O}-\mathrm{H}}\) bond is

1 \(\mathrm{498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{463 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{70 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369533 The standard heat of formation values of \(\mathrm{\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}_{(\mathrm{s})}}\), and \(\mathrm{\mathrm{F}(\mathrm{g})}\) are \(\mathrm{-1100,275}\), and 80 \(\mathrm{\mathrm{kJ} / \mathrm{mol}}\), respectively. Then the average \(\mathrm{\mathrm{S}-\mathrm{F}}\) bond energy in \(\mathrm{\mathrm{SF}_{6}}\) is

1 \(\mathrm{301 \mathrm{~kJ} / \mathrm{mol}}\)
2 \(\mathrm{320 \mathrm{~kJ} / \mathrm{mol}}\)
3 \(\mathrm{309 \mathrm{~kJ} / \mathrm{mol}}\)
4 \(\mathrm{280 \mathrm{~kJ} / \mathrm{mol}}\)
CHXI06:THERMODYNAMICS

369530 Energy required to dissociate \(\mathrm{4 \mathrm{~g}}\) of gaseous hydrogen into free gaseous atoms is \(\mathrm{208 \mathrm{kcal}}\) at \(\mathrm{25^{\circ} \mathrm{C}}\). The bond energy of \(\mathrm{\mathrm{H}-\mathrm{H}}\) bond will be

1 \(\mathrm{104 \mathrm{kcal}}\)
2 \(\mathrm{10.4 \mathrm{kcal}}\)
3 \(\mathrm{1040 \mathrm{kcal}}\)
4 \(\mathrm{-104 \mathrm{kcal}}\)
CHXI06:THERMODYNAMICS

369531 What will be the enthalpy change for the following reaction?
\({{\rm{H}}_{\rm{2}}}(\;{\rm{g}}){\rm{ + B}}{{\rm{r}}_{\rm{2}}}(\;{\rm{g}}) \to {\rm{2HBr}}({\rm{g}})\)
Given that Bond energy of \(\mathrm{\mathrm{H}_{2}, \mathrm{Br}_{2}}\) and \(\mathrm{\mathrm{HBr}}\) is \(\mathrm{435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{368 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively.

1 \({\rm{ + 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{ - 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{ + 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{ - 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369532 The enthalpy changes at \(\mathrm{298 \mathrm{~K}}\) in successive breaking of \(\mathrm{\mathrm{O}-\mathrm{H}}\) bonds in \(\mathrm{\mathrm{HOH}}\) are
\(\mathrm{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{OH}_{(\mathrm{g})} ; \Delta \mathrm{H}=498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\mathrm{OH}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} ; \Delta \mathrm{H}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The bond enthalpy of the \(\mathrm{\mathrm{O}-\mathrm{H}}\) bond is

1 \(\mathrm{498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{463 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{70 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369533 The standard heat of formation values of \(\mathrm{\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}_{(\mathrm{s})}}\), and \(\mathrm{\mathrm{F}(\mathrm{g})}\) are \(\mathrm{-1100,275}\), and 80 \(\mathrm{\mathrm{kJ} / \mathrm{mol}}\), respectively. Then the average \(\mathrm{\mathrm{S}-\mathrm{F}}\) bond energy in \(\mathrm{\mathrm{SF}_{6}}\) is

1 \(\mathrm{301 \mathrm{~kJ} / \mathrm{mol}}\)
2 \(\mathrm{320 \mathrm{~kJ} / \mathrm{mol}}\)
3 \(\mathrm{309 \mathrm{~kJ} / \mathrm{mol}}\)
4 \(\mathrm{280 \mathrm{~kJ} / \mathrm{mol}}\)
CHXI06:THERMODYNAMICS

369530 Energy required to dissociate \(\mathrm{4 \mathrm{~g}}\) of gaseous hydrogen into free gaseous atoms is \(\mathrm{208 \mathrm{kcal}}\) at \(\mathrm{25^{\circ} \mathrm{C}}\). The bond energy of \(\mathrm{\mathrm{H}-\mathrm{H}}\) bond will be

1 \(\mathrm{104 \mathrm{kcal}}\)
2 \(\mathrm{10.4 \mathrm{kcal}}\)
3 \(\mathrm{1040 \mathrm{kcal}}\)
4 \(\mathrm{-104 \mathrm{kcal}}\)
CHXI06:THERMODYNAMICS

369531 What will be the enthalpy change for the following reaction?
\({{\rm{H}}_{\rm{2}}}(\;{\rm{g}}){\rm{ + B}}{{\rm{r}}_{\rm{2}}}(\;{\rm{g}}) \to {\rm{2HBr}}({\rm{g}})\)
Given that Bond energy of \(\mathrm{\mathrm{H}_{2}, \mathrm{Br}_{2}}\) and \(\mathrm{\mathrm{HBr}}\) is \(\mathrm{435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) and \(\mathrm{368 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) respectively.

1 \({\rm{ + 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{ - 259}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{ + 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{ - 109}}\,{\rm{k}}\,{\rm{J}}\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369532 The enthalpy changes at \(\mathrm{298 \mathrm{~K}}\) in successive breaking of \(\mathrm{\mathrm{O}-\mathrm{H}}\) bonds in \(\mathrm{\mathrm{HOH}}\) are
\(\mathrm{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{OH}_{(\mathrm{g})} ; \Delta \mathrm{H}=498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
\(\mathrm{\mathrm{OH}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} ; \Delta \mathrm{H}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
The bond enthalpy of the \(\mathrm{\mathrm{O}-\mathrm{H}}\) bond is

1 \(\mathrm{498 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{463 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{428 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{70 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369533 The standard heat of formation values of \(\mathrm{\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}_{(\mathrm{s})}}\), and \(\mathrm{\mathrm{F}(\mathrm{g})}\) are \(\mathrm{-1100,275}\), and 80 \(\mathrm{\mathrm{kJ} / \mathrm{mol}}\), respectively. Then the average \(\mathrm{\mathrm{S}-\mathrm{F}}\) bond energy in \(\mathrm{\mathrm{SF}_{6}}\) is

1 \(\mathrm{301 \mathrm{~kJ} / \mathrm{mol}}\)
2 \(\mathrm{320 \mathrm{~kJ} / \mathrm{mol}}\)
3 \(\mathrm{309 \mathrm{~kJ} / \mathrm{mol}}\)
4 \(\mathrm{280 \mathrm{~kJ} / \mathrm{mol}}\)