First Law of Thermodynamics
CHXI06:THERMODYNAMICS

369382 To calculate the amount of work done in joules during reversible expansion of an ideal gas, the volume must be expressed in

1 Only m \({ }^{3}\)
2 Only dm \({ }^{3}\)
3 Only cm \({ }^{3}\)
4 All of these
CHXI06:THERMODYNAMICS

369383 The gaseous mixture containing 2 mole of each of two ideal gases \(\mathrm{\mathrm{A}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{3}{2} \mathrm{R}\right)}\) and \(\mathrm{\mathrm{B}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{5}{2} \mathrm{R}\right)}\). Find out the average molar heat capacity at constant volume.

1 \(\mathrm{8 \mathrm{R}}\)
2 \(\mathrm{3 R}\)
3 \(\mathrm{2 \mathrm{R}}\)
4 \(\mathrm{R}\)
CHXI06:THERMODYNAMICS

369384 If an ideal gas expansion were carried out both reversibly and irreversibly then

1 \(\mathrm{\mathrm{w}_{\text {rev }}=\mathrm{w}_{\text {irrev }}}\)
2 \(\mathrm{\mathrm{w}_{\text {rev }}>\mathrm{w}_{\text {irrev }}}\)
3 \(\mathrm{\mathrm{w}_{\text {rev }} < \mathrm{w}_{\text {irrev }}}\)
4 \(\mathrm{\mathrm{w}_{\text {rev }}=2 \times \mathrm{w}_{\text {irrev }}}\)
CHXI06:THERMODYNAMICS

369385 Calculate the work done when 1 mole of an ideal gas is compressed reversibly from 1 bar to 4 bar at a constant temperature of \(300 \mathrm{~K}\)

1 \(4.01 \mathrm{~kJ}\)
2 \(-8.02 \mathrm{~kJ}\)
3 \(18.02 \mathrm{~kJ}\)
4 None of these
CHXI06:THERMODYNAMICS

369382 To calculate the amount of work done in joules during reversible expansion of an ideal gas, the volume must be expressed in

1 Only m \({ }^{3}\)
2 Only dm \({ }^{3}\)
3 Only cm \({ }^{3}\)
4 All of these
CHXI06:THERMODYNAMICS

369383 The gaseous mixture containing 2 mole of each of two ideal gases \(\mathrm{\mathrm{A}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{3}{2} \mathrm{R}\right)}\) and \(\mathrm{\mathrm{B}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{5}{2} \mathrm{R}\right)}\). Find out the average molar heat capacity at constant volume.

1 \(\mathrm{8 \mathrm{R}}\)
2 \(\mathrm{3 R}\)
3 \(\mathrm{2 \mathrm{R}}\)
4 \(\mathrm{R}\)
CHXI06:THERMODYNAMICS

369384 If an ideal gas expansion were carried out both reversibly and irreversibly then

1 \(\mathrm{\mathrm{w}_{\text {rev }}=\mathrm{w}_{\text {irrev }}}\)
2 \(\mathrm{\mathrm{w}_{\text {rev }}>\mathrm{w}_{\text {irrev }}}\)
3 \(\mathrm{\mathrm{w}_{\text {rev }} < \mathrm{w}_{\text {irrev }}}\)
4 \(\mathrm{\mathrm{w}_{\text {rev }}=2 \times \mathrm{w}_{\text {irrev }}}\)
CHXI06:THERMODYNAMICS

369385 Calculate the work done when 1 mole of an ideal gas is compressed reversibly from 1 bar to 4 bar at a constant temperature of \(300 \mathrm{~K}\)

1 \(4.01 \mathrm{~kJ}\)
2 \(-8.02 \mathrm{~kJ}\)
3 \(18.02 \mathrm{~kJ}\)
4 None of these
CHXI06:THERMODYNAMICS

369382 To calculate the amount of work done in joules during reversible expansion of an ideal gas, the volume must be expressed in

1 Only m \({ }^{3}\)
2 Only dm \({ }^{3}\)
3 Only cm \({ }^{3}\)
4 All of these
CHXI06:THERMODYNAMICS

369383 The gaseous mixture containing 2 mole of each of two ideal gases \(\mathrm{\mathrm{A}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{3}{2} \mathrm{R}\right)}\) and \(\mathrm{\mathrm{B}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{5}{2} \mathrm{R}\right)}\). Find out the average molar heat capacity at constant volume.

1 \(\mathrm{8 \mathrm{R}}\)
2 \(\mathrm{3 R}\)
3 \(\mathrm{2 \mathrm{R}}\)
4 \(\mathrm{R}\)
CHXI06:THERMODYNAMICS

369384 If an ideal gas expansion were carried out both reversibly and irreversibly then

1 \(\mathrm{\mathrm{w}_{\text {rev }}=\mathrm{w}_{\text {irrev }}}\)
2 \(\mathrm{\mathrm{w}_{\text {rev }}>\mathrm{w}_{\text {irrev }}}\)
3 \(\mathrm{\mathrm{w}_{\text {rev }} < \mathrm{w}_{\text {irrev }}}\)
4 \(\mathrm{\mathrm{w}_{\text {rev }}=2 \times \mathrm{w}_{\text {irrev }}}\)
CHXI06:THERMODYNAMICS

369385 Calculate the work done when 1 mole of an ideal gas is compressed reversibly from 1 bar to 4 bar at a constant temperature of \(300 \mathrm{~K}\)

1 \(4.01 \mathrm{~kJ}\)
2 \(-8.02 \mathrm{~kJ}\)
3 \(18.02 \mathrm{~kJ}\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI06:THERMODYNAMICS

369382 To calculate the amount of work done in joules during reversible expansion of an ideal gas, the volume must be expressed in

1 Only m \({ }^{3}\)
2 Only dm \({ }^{3}\)
3 Only cm \({ }^{3}\)
4 All of these
CHXI06:THERMODYNAMICS

369383 The gaseous mixture containing 2 mole of each of two ideal gases \(\mathrm{\mathrm{A}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{3}{2} \mathrm{R}\right)}\) and \(\mathrm{\mathrm{B}\left(\mathrm{C}_{\mathrm{V}, \mathrm{m}}=\dfrac{5}{2} \mathrm{R}\right)}\). Find out the average molar heat capacity at constant volume.

1 \(\mathrm{8 \mathrm{R}}\)
2 \(\mathrm{3 R}\)
3 \(\mathrm{2 \mathrm{R}}\)
4 \(\mathrm{R}\)
CHXI06:THERMODYNAMICS

369384 If an ideal gas expansion were carried out both reversibly and irreversibly then

1 \(\mathrm{\mathrm{w}_{\text {rev }}=\mathrm{w}_{\text {irrev }}}\)
2 \(\mathrm{\mathrm{w}_{\text {rev }}>\mathrm{w}_{\text {irrev }}}\)
3 \(\mathrm{\mathrm{w}_{\text {rev }} < \mathrm{w}_{\text {irrev }}}\)
4 \(\mathrm{\mathrm{w}_{\text {rev }}=2 \times \mathrm{w}_{\text {irrev }}}\)
CHXI06:THERMODYNAMICS

369385 Calculate the work done when 1 mole of an ideal gas is compressed reversibly from 1 bar to 4 bar at a constant temperature of \(300 \mathrm{~K}\)

1 \(4.01 \mathrm{~kJ}\)
2 \(-8.02 \mathrm{~kJ}\)
3 \(18.02 \mathrm{~kJ}\)
4 None of these