Calorimeter
CHXI06:THERMODYNAMICS

369178 An ideal gas has a specific heat at constant pressure, \(\mathrm{C_{p}=(5 / 2) R}\). The gas is kept in a closed vessel of volume \(\mathrm{0.0083 \mathrm{~m}^{3}}\), at a temperature of \(\mathrm{300 \mathrm{~K}}\) and pressure \(\mathrm{1.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}\). An amount of \(\mathrm{2.49 \times 10^{4} \mathrm{~J}}\) of energy is supplied to the gas. The final temperature of the gas in Kelvin is

1 \(\mathrm{575 \mathrm{~K}}\)
2 \(\mathrm{675 \mathrm{~K}}\)
3 \(\mathrm{579 \mathrm{~K}}\)
4 \(\mathrm{765 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369179 The enthalpy change on freezing of \(\mathrm{1 \mathrm{~mol}}\) of water at \(\mathrm{5^{\circ} \mathrm{C}}\) to ice at \(\mathrm{-5^{\circ} \mathrm{C}}\) is:
(Given, \(\mathrm{\Delta_{\text {fus }} H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) at \(\mathrm{0^{\circ} \mathrm{C}}\),
\(\mathrm{\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=75.3 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}}\),
\(\mathrm{\left.\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{s}\right)=36.8 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}\right)}\)

1 \(\mathrm{5.44 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{5.81 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{6.56 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369180 \({\rm{1}}{\rm{.25\;g}}\) of \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) is cooled sample at constant atmospheric pressure of \(\mathrm{1 \mathrm{~atm}}\) from \(\mathrm{320 \mathrm{~K}}\) to 293 K. During cooling the sample volume decreased from 274 to \(\mathrm{248 \mathrm{~mL}}\). Calculate \(\mathrm{\Delta \mathrm{H}}\) for the \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) for this process \(\mathrm{\left(\mathrm{C}_{p}=80.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}\).

1 \(\mathrm{22.51 \mathrm{~J}}\)
2 \(\mathrm{-19.83 \mathrm{~J}}\)
3 \(\mathrm{19.88 \mathrm{~J}}\)
4 \(\mathrm{-22.51 \mathrm{~J}}\)
CHXI06:THERMODYNAMICS

369181 A coffee cup calorimeter initially contains 125 \(\mathrm{\mathrm{g}}\) of water at a temperature of \(\mathrm{24.2^{\circ} \mathrm{C}}\). After potassium bromide having mass \(\mathrm{10.5 \mathrm{~g}}\), also at \(\mathrm{24.2^{\circ} \mathrm{C}}\), is added to the water, the temperature becomes \(\mathrm{21.1^{\circ} \mathrm{C}}\). The heat of solution is

1 \(\mathrm{85 \mathrm{~J} / \mathrm{g}}\)
2 \(\mathrm{110 \mathrm{~J} / \mathrm{g}}\)
3 \(\mathrm{270 \mathrm{~J} / \mathrm{g}}\)
4 \(\mathrm{167 \mathrm{~J} / \mathrm{g}}\)
CHXI06:THERMODYNAMICS

369178 An ideal gas has a specific heat at constant pressure, \(\mathrm{C_{p}=(5 / 2) R}\). The gas is kept in a closed vessel of volume \(\mathrm{0.0083 \mathrm{~m}^{3}}\), at a temperature of \(\mathrm{300 \mathrm{~K}}\) and pressure \(\mathrm{1.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}\). An amount of \(\mathrm{2.49 \times 10^{4} \mathrm{~J}}\) of energy is supplied to the gas. The final temperature of the gas in Kelvin is

1 \(\mathrm{575 \mathrm{~K}}\)
2 \(\mathrm{675 \mathrm{~K}}\)
3 \(\mathrm{579 \mathrm{~K}}\)
4 \(\mathrm{765 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369179 The enthalpy change on freezing of \(\mathrm{1 \mathrm{~mol}}\) of water at \(\mathrm{5^{\circ} \mathrm{C}}\) to ice at \(\mathrm{-5^{\circ} \mathrm{C}}\) is:
(Given, \(\mathrm{\Delta_{\text {fus }} H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) at \(\mathrm{0^{\circ} \mathrm{C}}\),
\(\mathrm{\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=75.3 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}}\),
\(\mathrm{\left.\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{s}\right)=36.8 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}\right)}\)

1 \(\mathrm{5.44 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{5.81 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{6.56 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369180 \({\rm{1}}{\rm{.25\;g}}\) of \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) is cooled sample at constant atmospheric pressure of \(\mathrm{1 \mathrm{~atm}}\) from \(\mathrm{320 \mathrm{~K}}\) to 293 K. During cooling the sample volume decreased from 274 to \(\mathrm{248 \mathrm{~mL}}\). Calculate \(\mathrm{\Delta \mathrm{H}}\) for the \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) for this process \(\mathrm{\left(\mathrm{C}_{p}=80.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}\).

1 \(\mathrm{22.51 \mathrm{~J}}\)
2 \(\mathrm{-19.83 \mathrm{~J}}\)
3 \(\mathrm{19.88 \mathrm{~J}}\)
4 \(\mathrm{-22.51 \mathrm{~J}}\)
CHXI06:THERMODYNAMICS

369181 A coffee cup calorimeter initially contains 125 \(\mathrm{\mathrm{g}}\) of water at a temperature of \(\mathrm{24.2^{\circ} \mathrm{C}}\). After potassium bromide having mass \(\mathrm{10.5 \mathrm{~g}}\), also at \(\mathrm{24.2^{\circ} \mathrm{C}}\), is added to the water, the temperature becomes \(\mathrm{21.1^{\circ} \mathrm{C}}\). The heat of solution is

1 \(\mathrm{85 \mathrm{~J} / \mathrm{g}}\)
2 \(\mathrm{110 \mathrm{~J} / \mathrm{g}}\)
3 \(\mathrm{270 \mathrm{~J} / \mathrm{g}}\)
4 \(\mathrm{167 \mathrm{~J} / \mathrm{g}}\)
CHXI06:THERMODYNAMICS

369178 An ideal gas has a specific heat at constant pressure, \(\mathrm{C_{p}=(5 / 2) R}\). The gas is kept in a closed vessel of volume \(\mathrm{0.0083 \mathrm{~m}^{3}}\), at a temperature of \(\mathrm{300 \mathrm{~K}}\) and pressure \(\mathrm{1.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}\). An amount of \(\mathrm{2.49 \times 10^{4} \mathrm{~J}}\) of energy is supplied to the gas. The final temperature of the gas in Kelvin is

1 \(\mathrm{575 \mathrm{~K}}\)
2 \(\mathrm{675 \mathrm{~K}}\)
3 \(\mathrm{579 \mathrm{~K}}\)
4 \(\mathrm{765 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369179 The enthalpy change on freezing of \(\mathrm{1 \mathrm{~mol}}\) of water at \(\mathrm{5^{\circ} \mathrm{C}}\) to ice at \(\mathrm{-5^{\circ} \mathrm{C}}\) is:
(Given, \(\mathrm{\Delta_{\text {fus }} H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) at \(\mathrm{0^{\circ} \mathrm{C}}\),
\(\mathrm{\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=75.3 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}}\),
\(\mathrm{\left.\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{s}\right)=36.8 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}\right)}\)

1 \(\mathrm{5.44 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{5.81 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{6.56 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369180 \({\rm{1}}{\rm{.25\;g}}\) of \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) is cooled sample at constant atmospheric pressure of \(\mathrm{1 \mathrm{~atm}}\) from \(\mathrm{320 \mathrm{~K}}\) to 293 K. During cooling the sample volume decreased from 274 to \(\mathrm{248 \mathrm{~mL}}\). Calculate \(\mathrm{\Delta \mathrm{H}}\) for the \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) for this process \(\mathrm{\left(\mathrm{C}_{p}=80.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}\).

1 \(\mathrm{22.51 \mathrm{~J}}\)
2 \(\mathrm{-19.83 \mathrm{~J}}\)
3 \(\mathrm{19.88 \mathrm{~J}}\)
4 \(\mathrm{-22.51 \mathrm{~J}}\)
CHXI06:THERMODYNAMICS

369181 A coffee cup calorimeter initially contains 125 \(\mathrm{\mathrm{g}}\) of water at a temperature of \(\mathrm{24.2^{\circ} \mathrm{C}}\). After potassium bromide having mass \(\mathrm{10.5 \mathrm{~g}}\), also at \(\mathrm{24.2^{\circ} \mathrm{C}}\), is added to the water, the temperature becomes \(\mathrm{21.1^{\circ} \mathrm{C}}\). The heat of solution is

1 \(\mathrm{85 \mathrm{~J} / \mathrm{g}}\)
2 \(\mathrm{110 \mathrm{~J} / \mathrm{g}}\)
3 \(\mathrm{270 \mathrm{~J} / \mathrm{g}}\)
4 \(\mathrm{167 \mathrm{~J} / \mathrm{g}}\)
CHXI06:THERMODYNAMICS

369178 An ideal gas has a specific heat at constant pressure, \(\mathrm{C_{p}=(5 / 2) R}\). The gas is kept in a closed vessel of volume \(\mathrm{0.0083 \mathrm{~m}^{3}}\), at a temperature of \(\mathrm{300 \mathrm{~K}}\) and pressure \(\mathrm{1.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}}\). An amount of \(\mathrm{2.49 \times 10^{4} \mathrm{~J}}\) of energy is supplied to the gas. The final temperature of the gas in Kelvin is

1 \(\mathrm{575 \mathrm{~K}}\)
2 \(\mathrm{675 \mathrm{~K}}\)
3 \(\mathrm{579 \mathrm{~K}}\)
4 \(\mathrm{765 \mathrm{~K}}\)
CHXI06:THERMODYNAMICS

369179 The enthalpy change on freezing of \(\mathrm{1 \mathrm{~mol}}\) of water at \(\mathrm{5^{\circ} \mathrm{C}}\) to ice at \(\mathrm{-5^{\circ} \mathrm{C}}\) is:
(Given, \(\mathrm{\Delta_{\text {fus }} H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}}\) at \(\mathrm{0^{\circ} \mathrm{C}}\),
\(\mathrm{\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=75.3 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}}\),
\(\mathrm{\left.\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{s}\right)=36.8 \mathrm{~J} \mathrm{~mol} .1 \mathrm{~K}^{-1}\right)}\)

1 \(\mathrm{5.44 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
2 \(\mathrm{5.81 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
3 \(\mathrm{6.56 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
4 \(\mathrm{6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
CHXI06:THERMODYNAMICS

369180 \({\rm{1}}{\rm{.25\;g}}\) of \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) is cooled sample at constant atmospheric pressure of \(\mathrm{1 \mathrm{~atm}}\) from \(\mathrm{320 \mathrm{~K}}\) to 293 K. During cooling the sample volume decreased from 274 to \(\mathrm{248 \mathrm{~mL}}\). Calculate \(\mathrm{\Delta \mathrm{H}}\) for the \({\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}\) for this process \(\mathrm{\left(\mathrm{C}_{p}=80.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}\).

1 \(\mathrm{22.51 \mathrm{~J}}\)
2 \(\mathrm{-19.83 \mathrm{~J}}\)
3 \(\mathrm{19.88 \mathrm{~J}}\)
4 \(\mathrm{-22.51 \mathrm{~J}}\)
CHXI06:THERMODYNAMICS

369181 A coffee cup calorimeter initially contains 125 \(\mathrm{\mathrm{g}}\) of water at a temperature of \(\mathrm{24.2^{\circ} \mathrm{C}}\). After potassium bromide having mass \(\mathrm{10.5 \mathrm{~g}}\), also at \(\mathrm{24.2^{\circ} \mathrm{C}}\), is added to the water, the temperature becomes \(\mathrm{21.1^{\circ} \mathrm{C}}\). The heat of solution is

1 \(\mathrm{85 \mathrm{~J} / \mathrm{g}}\)
2 \(\mathrm{110 \mathrm{~J} / \mathrm{g}}\)
3 \(\mathrm{270 \mathrm{~J} / \mathrm{g}}\)
4 \(\mathrm{167 \mathrm{~J} / \mathrm{g}}\)