Absolute Entropy and Third Law of Thermodynamics
CHXI06:THERMODYNAMICS

369283 The molar heat capacity \(\mathrm{\left(C_{p}\right)}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) is 10 cals at \(\mathrm{1000 \mathrm{~K}}\). The change in entropy associated with cooling of \(\mathrm{32 \mathrm{~g}}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) vapour from 1000 \(\mathrm{\mathrm{K}}\) to \(\mathrm{100 \mathrm{~K}}\) at constant pressure will be: \(\mathrm{(\mathrm{D}=}\) deuterium, atomic mass \(\mathrm{=2 \mathrm{u}}\) )

1 \({\text{23}}{\text{.03}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
2 \({\rm{ - 23}}{\rm{.03}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
3 \({\text{2}}{\text{.303}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
4 \({\rm{ - 2}}{\rm{.303}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369284 For irreversible isothermal expansion of an ideal gas under isothermal condition, the correct option is :

1 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }} \neq 0}\)
2 \(\mathrm{\Delta U=0, \Delta S_{\text {total }} \neq 0}\)
3 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }}=0}\)
4 \(\mathrm{\Delta U=0, \Delta S_{\text {total }}=0}\)
CHXI06:THERMODYNAMICS

369285 When 2 moles of an ideal gas \(\mathrm{\left(C_{p, m}=\left(\dfrac{5}{2}\right) R\right)}\) is heated from \(\mathrm{300 \mathrm{~K}}\) to \(\mathrm{600 \mathrm{~K}}\) at constant pressure, then the change in entropy of gas \(\mathrm{(\Delta S)}\) is

1 \(\mathrm{\dfrac{3}{2} R \ln 2}\)
2 \(\mathrm{-\dfrac{3}{2} R \ln 2}\)
3 \(\mathrm{5 R \ln 2}\)
4 \(\mathrm{\dfrac{5}{2} R \ln 2}\)
CHXI06:THERMODYNAMICS

369286 In the process:
\({{{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{s}}, - {\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}}) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{l}},{\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}})}\)
\({\mathrm{\mathrm{C}_{P}}}\) for ice \({\mathrm{=9 \, \mathrm{cal} \, \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \mathrm{C}_{P}}}\) for \({\mathrm{\mathrm{H}_{2} \mathrm{O}=18 \, \mathrm{cal} \, \mathrm{deg}^{-1}}}\) \({\mathrm{\mathrm{mol}^{-1}}}\). Latent heat of fusion of ice \({\mathrm{=1440 \, \mathrm{cal} \, \mathrm{mol}^{-1}}}\) at \({\mathrm{0^{\circ} \mathrm{C}}}\). The entropy change for the above process is \({\rm{6}}.{\rm{258}}{\mkern 1mu} \,{\rm{cal}}\,{\rm{de}}{{\rm{g}}^{ - 1}}\) \({\mathrm{\mathrm{mol}^{-1}}}\).
Give the total number of steps in which the third law of thermodynamics is used.

1 1
2 2
3 3
4 5
CHXI06:THERMODYNAMICS

369283 The molar heat capacity \(\mathrm{\left(C_{p}\right)}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) is 10 cals at \(\mathrm{1000 \mathrm{~K}}\). The change in entropy associated with cooling of \(\mathrm{32 \mathrm{~g}}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) vapour from 1000 \(\mathrm{\mathrm{K}}\) to \(\mathrm{100 \mathrm{~K}}\) at constant pressure will be: \(\mathrm{(\mathrm{D}=}\) deuterium, atomic mass \(\mathrm{=2 \mathrm{u}}\) )

1 \({\text{23}}{\text{.03}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
2 \({\rm{ - 23}}{\rm{.03}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
3 \({\text{2}}{\text{.303}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
4 \({\rm{ - 2}}{\rm{.303}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369284 For irreversible isothermal expansion of an ideal gas under isothermal condition, the correct option is :

1 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }} \neq 0}\)
2 \(\mathrm{\Delta U=0, \Delta S_{\text {total }} \neq 0}\)
3 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }}=0}\)
4 \(\mathrm{\Delta U=0, \Delta S_{\text {total }}=0}\)
CHXI06:THERMODYNAMICS

369285 When 2 moles of an ideal gas \(\mathrm{\left(C_{p, m}=\left(\dfrac{5}{2}\right) R\right)}\) is heated from \(\mathrm{300 \mathrm{~K}}\) to \(\mathrm{600 \mathrm{~K}}\) at constant pressure, then the change in entropy of gas \(\mathrm{(\Delta S)}\) is

1 \(\mathrm{\dfrac{3}{2} R \ln 2}\)
2 \(\mathrm{-\dfrac{3}{2} R \ln 2}\)
3 \(\mathrm{5 R \ln 2}\)
4 \(\mathrm{\dfrac{5}{2} R \ln 2}\)
CHXI06:THERMODYNAMICS

369286 In the process:
\({{{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{s}}, - {\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}}) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{l}},{\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}})}\)
\({\mathrm{\mathrm{C}_{P}}}\) for ice \({\mathrm{=9 \, \mathrm{cal} \, \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \mathrm{C}_{P}}}\) for \({\mathrm{\mathrm{H}_{2} \mathrm{O}=18 \, \mathrm{cal} \, \mathrm{deg}^{-1}}}\) \({\mathrm{\mathrm{mol}^{-1}}}\). Latent heat of fusion of ice \({\mathrm{=1440 \, \mathrm{cal} \, \mathrm{mol}^{-1}}}\) at \({\mathrm{0^{\circ} \mathrm{C}}}\). The entropy change for the above process is \({\rm{6}}.{\rm{258}}{\mkern 1mu} \,{\rm{cal}}\,{\rm{de}}{{\rm{g}}^{ - 1}}\) \({\mathrm{\mathrm{mol}^{-1}}}\).
Give the total number of steps in which the third law of thermodynamics is used.

1 1
2 2
3 3
4 5
CHXI06:THERMODYNAMICS

369283 The molar heat capacity \(\mathrm{\left(C_{p}\right)}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) is 10 cals at \(\mathrm{1000 \mathrm{~K}}\). The change in entropy associated with cooling of \(\mathrm{32 \mathrm{~g}}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) vapour from 1000 \(\mathrm{\mathrm{K}}\) to \(\mathrm{100 \mathrm{~K}}\) at constant pressure will be: \(\mathrm{(\mathrm{D}=}\) deuterium, atomic mass \(\mathrm{=2 \mathrm{u}}\) )

1 \({\text{23}}{\text{.03}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
2 \({\rm{ - 23}}{\rm{.03}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
3 \({\text{2}}{\text{.303}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
4 \({\rm{ - 2}}{\rm{.303}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369284 For irreversible isothermal expansion of an ideal gas under isothermal condition, the correct option is :

1 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }} \neq 0}\)
2 \(\mathrm{\Delta U=0, \Delta S_{\text {total }} \neq 0}\)
3 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }}=0}\)
4 \(\mathrm{\Delta U=0, \Delta S_{\text {total }}=0}\)
CHXI06:THERMODYNAMICS

369285 When 2 moles of an ideal gas \(\mathrm{\left(C_{p, m}=\left(\dfrac{5}{2}\right) R\right)}\) is heated from \(\mathrm{300 \mathrm{~K}}\) to \(\mathrm{600 \mathrm{~K}}\) at constant pressure, then the change in entropy of gas \(\mathrm{(\Delta S)}\) is

1 \(\mathrm{\dfrac{3}{2} R \ln 2}\)
2 \(\mathrm{-\dfrac{3}{2} R \ln 2}\)
3 \(\mathrm{5 R \ln 2}\)
4 \(\mathrm{\dfrac{5}{2} R \ln 2}\)
CHXI06:THERMODYNAMICS

369286 In the process:
\({{{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{s}}, - {\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}}) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{l}},{\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}})}\)
\({\mathrm{\mathrm{C}_{P}}}\) for ice \({\mathrm{=9 \, \mathrm{cal} \, \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \mathrm{C}_{P}}}\) for \({\mathrm{\mathrm{H}_{2} \mathrm{O}=18 \, \mathrm{cal} \, \mathrm{deg}^{-1}}}\) \({\mathrm{\mathrm{mol}^{-1}}}\). Latent heat of fusion of ice \({\mathrm{=1440 \, \mathrm{cal} \, \mathrm{mol}^{-1}}}\) at \({\mathrm{0^{\circ} \mathrm{C}}}\). The entropy change for the above process is \({\rm{6}}.{\rm{258}}{\mkern 1mu} \,{\rm{cal}}\,{\rm{de}}{{\rm{g}}^{ - 1}}\) \({\mathrm{\mathrm{mol}^{-1}}}\).
Give the total number of steps in which the third law of thermodynamics is used.

1 1
2 2
3 3
4 5
CHXI06:THERMODYNAMICS

369283 The molar heat capacity \(\mathrm{\left(C_{p}\right)}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) is 10 cals at \(\mathrm{1000 \mathrm{~K}}\). The change in entropy associated with cooling of \(\mathrm{32 \mathrm{~g}}\) of \(\mathrm{\mathrm{CD}_{2} \mathrm{O}}\) vapour from 1000 \(\mathrm{\mathrm{K}}\) to \(\mathrm{100 \mathrm{~K}}\) at constant pressure will be: \(\mathrm{(\mathrm{D}=}\) deuterium, atomic mass \(\mathrm{=2 \mathrm{u}}\) )

1 \({\text{23}}{\text{.03}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
2 \({\rm{ - 23}}{\rm{.03}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
3 \({\text{2}}{\text{.303}}\,{\text{calde}}{{\text{g}}^{{\text{ - 1}}}}\)
4 \({\rm{ - 2}}{\rm{.303}}{\mkern 1mu} {\rm{calde}}{{\rm{g}}^{{\rm{ - 1}}}}\)
CHXI06:THERMODYNAMICS

369284 For irreversible isothermal expansion of an ideal gas under isothermal condition, the correct option is :

1 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }} \neq 0}\)
2 \(\mathrm{\Delta U=0, \Delta S_{\text {total }} \neq 0}\)
3 \(\mathrm{\Delta U \neq 0, \Delta S_{\text {total }}=0}\)
4 \(\mathrm{\Delta U=0, \Delta S_{\text {total }}=0}\)
CHXI06:THERMODYNAMICS

369285 When 2 moles of an ideal gas \(\mathrm{\left(C_{p, m}=\left(\dfrac{5}{2}\right) R\right)}\) is heated from \(\mathrm{300 \mathrm{~K}}\) to \(\mathrm{600 \mathrm{~K}}\) at constant pressure, then the change in entropy of gas \(\mathrm{(\Delta S)}\) is

1 \(\mathrm{\dfrac{3}{2} R \ln 2}\)
2 \(\mathrm{-\dfrac{3}{2} R \ln 2}\)
3 \(\mathrm{5 R \ln 2}\)
4 \(\mathrm{\dfrac{5}{2} R \ln 2}\)
CHXI06:THERMODYNAMICS

369286 In the process:
\({{{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{s}}, - {\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}}) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}({\rm{l}},{\rm{10}}^\circ {\rm{ C}},{\rm{1}}\;{\rm{atm}})}\)
\({\mathrm{\mathrm{C}_{P}}}\) for ice \({\mathrm{=9 \, \mathrm{cal} \, \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \mathrm{C}_{P}}}\) for \({\mathrm{\mathrm{H}_{2} \mathrm{O}=18 \, \mathrm{cal} \, \mathrm{deg}^{-1}}}\) \({\mathrm{\mathrm{mol}^{-1}}}\). Latent heat of fusion of ice \({\mathrm{=1440 \, \mathrm{cal} \, \mathrm{mol}^{-1}}}\) at \({\mathrm{0^{\circ} \mathrm{C}}}\). The entropy change for the above process is \({\rm{6}}.{\rm{258}}{\mkern 1mu} \,{\rm{cal}}\,{\rm{de}}{{\rm{g}}^{ - 1}}\) \({\mathrm{\mathrm{mol}^{-1}}}\).
Give the total number of steps in which the third law of thermodynamics is used.

1 1
2 2
3 3
4 5