Comparision of Valence Bond Theory and Molecular Orbital Theory
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313732 Which one is paramagnetic and has a bond order of \(\frac{{\rm{1}}}{{\rm{2}}}\) ?

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
2 \({\rm{N}}_{\rm{2}}^{\rm{ + }}\)
3 \({{\rm{F}}_{\rm{2}}}\)
4 \({\rm{H}}_{\rm{2}}^{\rm{ + }}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313733 Using MOT, compare \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) species and choose the incorrect option:

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is less stable
2 Both \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are paramagnetic
3 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) have a higher bond order than \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
4 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) is diamagnetic while \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is paramagnetic
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313783 The electron probability density \({\rm{\psi }}_{{\rm{BMO}}}^{\rm{2}}\) is higher than the sum for individual atomic orbitals \(\left( {{\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{ + \psi }}_{\rm{B}}^{\rm{2}}} \right)\) by a factor of

1 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}\)
2 \({\rm{2}}{{\rm{\psi }}_{\rm{B}}}\)
3 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}{{\rm{\psi }}_{\rm{B}}}\)
4 \({\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{\psi }}_{\rm{B}}^{\rm{2}}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313784 The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
(I) have the same energy
(II) have the minimum overlap
(III) have same symmetry about the molecular axis
(IV) have different symmetry about the molecular axis
Choose the most appropriate from the options given below :

1 (I), (II), (III) only
2 (II), (III), (IV) only
3 (I) and (III) only
4 (II) and (IV) only
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313732 Which one is paramagnetic and has a bond order of \(\frac{{\rm{1}}}{{\rm{2}}}\) ?

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
2 \({\rm{N}}_{\rm{2}}^{\rm{ + }}\)
3 \({{\rm{F}}_{\rm{2}}}\)
4 \({\rm{H}}_{\rm{2}}^{\rm{ + }}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313733 Using MOT, compare \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) species and choose the incorrect option:

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is less stable
2 Both \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are paramagnetic
3 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) have a higher bond order than \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
4 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) is diamagnetic while \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is paramagnetic
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313783 The electron probability density \({\rm{\psi }}_{{\rm{BMO}}}^{\rm{2}}\) is higher than the sum for individual atomic orbitals \(\left( {{\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{ + \psi }}_{\rm{B}}^{\rm{2}}} \right)\) by a factor of

1 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}\)
2 \({\rm{2}}{{\rm{\psi }}_{\rm{B}}}\)
3 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}{{\rm{\psi }}_{\rm{B}}}\)
4 \({\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{\psi }}_{\rm{B}}^{\rm{2}}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313784 The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
(I) have the same energy
(II) have the minimum overlap
(III) have same symmetry about the molecular axis
(IV) have different symmetry about the molecular axis
Choose the most appropriate from the options given below :

1 (I), (II), (III) only
2 (II), (III), (IV) only
3 (I) and (III) only
4 (II) and (IV) only
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313732 Which one is paramagnetic and has a bond order of \(\frac{{\rm{1}}}{{\rm{2}}}\) ?

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
2 \({\rm{N}}_{\rm{2}}^{\rm{ + }}\)
3 \({{\rm{F}}_{\rm{2}}}\)
4 \({\rm{H}}_{\rm{2}}^{\rm{ + }}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313733 Using MOT, compare \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) species and choose the incorrect option:

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is less stable
2 Both \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are paramagnetic
3 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) have a higher bond order than \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
4 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) is diamagnetic while \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is paramagnetic
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313783 The electron probability density \({\rm{\psi }}_{{\rm{BMO}}}^{\rm{2}}\) is higher than the sum for individual atomic orbitals \(\left( {{\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{ + \psi }}_{\rm{B}}^{\rm{2}}} \right)\) by a factor of

1 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}\)
2 \({\rm{2}}{{\rm{\psi }}_{\rm{B}}}\)
3 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}{{\rm{\psi }}_{\rm{B}}}\)
4 \({\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{\psi }}_{\rm{B}}^{\rm{2}}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313784 The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
(I) have the same energy
(II) have the minimum overlap
(III) have same symmetry about the molecular axis
(IV) have different symmetry about the molecular axis
Choose the most appropriate from the options given below :

1 (I), (II), (III) only
2 (II), (III), (IV) only
3 (I) and (III) only
4 (II) and (IV) only
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313732 Which one is paramagnetic and has a bond order of \(\frac{{\rm{1}}}{{\rm{2}}}\) ?

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
2 \({\rm{N}}_{\rm{2}}^{\rm{ + }}\)
3 \({{\rm{F}}_{\rm{2}}}\)
4 \({\rm{H}}_{\rm{2}}^{\rm{ + }}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313733 Using MOT, compare \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) species and choose the incorrect option:

1 \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is less stable
2 Both \({\rm{O}}_{\rm{2}}^{\rm{ + }}\,\,{\rm{and}}\,\,{\rm{O}}_{\rm{2}}^{\rm{ - }}\) are paramagnetic
3 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) have a higher bond order than \({\rm{O}}_{\rm{2}}^{\rm{ - }}\)
4 \({\rm{O}}_{\rm{2}}^{\rm{ + }}\) is diamagnetic while \({\rm{O}}_{\rm{2}}^{\rm{ - }}\) is paramagnetic
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313783 The electron probability density \({\rm{\psi }}_{{\rm{BMO}}}^{\rm{2}}\) is higher than the sum for individual atomic orbitals \(\left( {{\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{ + \psi }}_{\rm{B}}^{\rm{2}}} \right)\) by a factor of

1 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}\)
2 \({\rm{2}}{{\rm{\psi }}_{\rm{B}}}\)
3 \({\rm{2}}{{\rm{\psi }}_{\rm{A}}}{{\rm{\psi }}_{\rm{B}}}\)
4 \({\rm{\psi }}_{\rm{A}}^{\rm{2}}{\rm{\psi }}_{\rm{B}}^{\rm{2}}\)
CHXI04:CHEMICAL BONDING AND MOLECULAR STRUCTURE

313784 The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
(I) have the same energy
(II) have the minimum overlap
(III) have same symmetry about the molecular axis
(IV) have different symmetry about the molecular axis
Choose the most appropriate from the options given below :

1 (I), (II), (III) only
2 (II), (III), (IV) only
3 (I) and (III) only
4 (II) and (IV) only