Spectra
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307591 If the shortest wavelength of the spectral line of H-atom in the Lyman series is X, then the longest wavelength of the line in Balmer series of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is

1 \({\rm{9x}}\)
2 \(\frac{{\rm{x}}}{{\rm{9}}}\)
3 \(\frac{{{\rm{5x}}}}{{\rm{4}}}\)
4 \(\frac{{{\rm{4x}}}}{{\rm{5}}}\)
CHXI02:STRUCTURE OF ATOM

307592 For hydrogen atom, the shortest wavelength of Lyman series is \({\lambda _L}\) \( \mathop {\rm{A}}^{\circ} \) while the shortest wavelength of Paschen series is \({\lambda _P}\) \( \mathop {\rm{A}}^{\circ} \). The value of \({\mathrm{\dfrac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{L}}}}}\) is

1 9
2 \(\frac{1}{9}\)
3 \(\infty \)
4 1
CHXI02:STRUCTURE OF ATOM

307593 The wavelength of the third line of the Balmer series for a hydrogen atom is

1 \(\frac{{{\rm{21}}}}{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}\)
2 \(\frac{{{\rm{100}}}}{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}\)
3 \(\frac{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{100}}}}\)
4 \(\frac{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{21}}}}\)
CHXI02:STRUCTURE OF ATOM

307594 Determine ratio of wavelength of first line & third line of Balmer series in H-Spectrum

1 \({\rm{1}}\)
2 \(1.512\)
3 \({\rm{2}}\)
4 \({\rm{2}}{\rm{.512}}\)
CHXI02:STRUCTURE OF ATOM

307591 If the shortest wavelength of the spectral line of H-atom in the Lyman series is X, then the longest wavelength of the line in Balmer series of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is

1 \({\rm{9x}}\)
2 \(\frac{{\rm{x}}}{{\rm{9}}}\)
3 \(\frac{{{\rm{5x}}}}{{\rm{4}}}\)
4 \(\frac{{{\rm{4x}}}}{{\rm{5}}}\)
CHXI02:STRUCTURE OF ATOM

307592 For hydrogen atom, the shortest wavelength of Lyman series is \({\lambda _L}\) \( \mathop {\rm{A}}^{\circ} \) while the shortest wavelength of Paschen series is \({\lambda _P}\) \( \mathop {\rm{A}}^{\circ} \). The value of \({\mathrm{\dfrac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{L}}}}}\) is

1 9
2 \(\frac{1}{9}\)
3 \(\infty \)
4 1
CHXI02:STRUCTURE OF ATOM

307593 The wavelength of the third line of the Balmer series for a hydrogen atom is

1 \(\frac{{{\rm{21}}}}{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}\)
2 \(\frac{{{\rm{100}}}}{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}\)
3 \(\frac{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{100}}}}\)
4 \(\frac{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{21}}}}\)
CHXI02:STRUCTURE OF ATOM

307594 Determine ratio of wavelength of first line & third line of Balmer series in H-Spectrum

1 \({\rm{1}}\)
2 \(1.512\)
3 \({\rm{2}}\)
4 \({\rm{2}}{\rm{.512}}\)
CHXI02:STRUCTURE OF ATOM

307591 If the shortest wavelength of the spectral line of H-atom in the Lyman series is X, then the longest wavelength of the line in Balmer series of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is

1 \({\rm{9x}}\)
2 \(\frac{{\rm{x}}}{{\rm{9}}}\)
3 \(\frac{{{\rm{5x}}}}{{\rm{4}}}\)
4 \(\frac{{{\rm{4x}}}}{{\rm{5}}}\)
CHXI02:STRUCTURE OF ATOM

307592 For hydrogen atom, the shortest wavelength of Lyman series is \({\lambda _L}\) \( \mathop {\rm{A}}^{\circ} \) while the shortest wavelength of Paschen series is \({\lambda _P}\) \( \mathop {\rm{A}}^{\circ} \). The value of \({\mathrm{\dfrac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{L}}}}}\) is

1 9
2 \(\frac{1}{9}\)
3 \(\infty \)
4 1
CHXI02:STRUCTURE OF ATOM

307593 The wavelength of the third line of the Balmer series for a hydrogen atom is

1 \(\frac{{{\rm{21}}}}{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}\)
2 \(\frac{{{\rm{100}}}}{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}\)
3 \(\frac{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{100}}}}\)
4 \(\frac{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{21}}}}\)
CHXI02:STRUCTURE OF ATOM

307594 Determine ratio of wavelength of first line & third line of Balmer series in H-Spectrum

1 \({\rm{1}}\)
2 \(1.512\)
3 \({\rm{2}}\)
4 \({\rm{2}}{\rm{.512}}\)
CHXI02:STRUCTURE OF ATOM

307591 If the shortest wavelength of the spectral line of H-atom in the Lyman series is X, then the longest wavelength of the line in Balmer series of \({\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\) is

1 \({\rm{9x}}\)
2 \(\frac{{\rm{x}}}{{\rm{9}}}\)
3 \(\frac{{{\rm{5x}}}}{{\rm{4}}}\)
4 \(\frac{{{\rm{4x}}}}{{\rm{5}}}\)
CHXI02:STRUCTURE OF ATOM

307592 For hydrogen atom, the shortest wavelength of Lyman series is \({\lambda _L}\) \( \mathop {\rm{A}}^{\circ} \) while the shortest wavelength of Paschen series is \({\lambda _P}\) \( \mathop {\rm{A}}^{\circ} \). The value of \({\mathrm{\dfrac{\lambda_{\mathrm{P}}}{\lambda_{\mathrm{L}}}}}\) is

1 9
2 \(\frac{1}{9}\)
3 \(\infty \)
4 1
CHXI02:STRUCTURE OF ATOM

307593 The wavelength of the third line of the Balmer series for a hydrogen atom is

1 \(\frac{{{\rm{21}}}}{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}\)
2 \(\frac{{{\rm{100}}}}{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}\)
3 \(\frac{{{\rm{21}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{100}}}}\)
4 \(\frac{{{\rm{100}}{{\rm{R}}_{\rm{H}}}}}{{{\rm{21}}}}\)
CHXI02:STRUCTURE OF ATOM

307594 Determine ratio of wavelength of first line & third line of Balmer series in H-Spectrum

1 \({\rm{1}}\)
2 \(1.512\)
3 \({\rm{2}}\)
4 \({\rm{2}}{\rm{.512}}\)