Particle Nature of Electromagnetic Radiation
CHXI02:STRUCTURE OF ATOM

307413 What would be the ratio of energy of a photon of frequency \(x\,{s^{ - 1}}\) to \(y\,{s^{ - 1}}\)?

1 \({\rm{xy}}\)
2 \({\rm{x/y}}\)
3 \({\rm{y/x}}\)
4 \({\rm{x + y}}\)
CHXI02:STRUCTURE OF ATOM

307414 A certain dye absorbs light of \(\lambda = 4000\mathop {\rm{A}}\limits^{\rm{^\circ }} \) and then fluorescences light of \(\lambda = 5000\) \( \mathop {\rm{A}}^{\circ} \)
Assuming that under given conditions \(50 \%\) of the absorbed energy is re-emitted out as fluorescence, calculate the ratio of the number of quanta emitted out to the number of quanta absorbed.

1 \(\dfrac{5}{8}\)
2 \(\dfrac{8}{5}\)
3 \(\dfrac{3}{8}\)
4 \(\dfrac{8}{3}\)
CHXI02:STRUCTURE OF ATOM

307415 The number of quanta of radiations of frequency \({\rm{4}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{13}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) required to melt 100 g of ice is (The energy required to melt 1 g of ice is 350J)

1 \({\rm{1}}{{\rm{0}}^{{\rm{21}}}}\)
2 \({\rm{1113 \times 1}}{{\rm{0}}^{{\rm{21}}}}\)
3 \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
4 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
CHXI02:STRUCTURE OF ATOM

307416 Number of photons having wavelength 632.8 nm, emitted by 5 mW laser source in 1 second is

1 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{19}}}}\)
2 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{16}}}}\)
3 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{25}}}}\)
4 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{13}}}}\)
CHXI02:STRUCTURE OF ATOM

307413 What would be the ratio of energy of a photon of frequency \(x\,{s^{ - 1}}\) to \(y\,{s^{ - 1}}\)?

1 \({\rm{xy}}\)
2 \({\rm{x/y}}\)
3 \({\rm{y/x}}\)
4 \({\rm{x + y}}\)
CHXI02:STRUCTURE OF ATOM

307414 A certain dye absorbs light of \(\lambda = 4000\mathop {\rm{A}}\limits^{\rm{^\circ }} \) and then fluorescences light of \(\lambda = 5000\) \( \mathop {\rm{A}}^{\circ} \)
Assuming that under given conditions \(50 \%\) of the absorbed energy is re-emitted out as fluorescence, calculate the ratio of the number of quanta emitted out to the number of quanta absorbed.

1 \(\dfrac{5}{8}\)
2 \(\dfrac{8}{5}\)
3 \(\dfrac{3}{8}\)
4 \(\dfrac{8}{3}\)
CHXI02:STRUCTURE OF ATOM

307415 The number of quanta of radiations of frequency \({\rm{4}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{13}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) required to melt 100 g of ice is (The energy required to melt 1 g of ice is 350J)

1 \({\rm{1}}{{\rm{0}}^{{\rm{21}}}}\)
2 \({\rm{1113 \times 1}}{{\rm{0}}^{{\rm{21}}}}\)
3 \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
4 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
CHXI02:STRUCTURE OF ATOM

307416 Number of photons having wavelength 632.8 nm, emitted by 5 mW laser source in 1 second is

1 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{19}}}}\)
2 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{16}}}}\)
3 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{25}}}}\)
4 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{13}}}}\)
CHXI02:STRUCTURE OF ATOM

307413 What would be the ratio of energy of a photon of frequency \(x\,{s^{ - 1}}\) to \(y\,{s^{ - 1}}\)?

1 \({\rm{xy}}\)
2 \({\rm{x/y}}\)
3 \({\rm{y/x}}\)
4 \({\rm{x + y}}\)
CHXI02:STRUCTURE OF ATOM

307414 A certain dye absorbs light of \(\lambda = 4000\mathop {\rm{A}}\limits^{\rm{^\circ }} \) and then fluorescences light of \(\lambda = 5000\) \( \mathop {\rm{A}}^{\circ} \)
Assuming that under given conditions \(50 \%\) of the absorbed energy is re-emitted out as fluorescence, calculate the ratio of the number of quanta emitted out to the number of quanta absorbed.

1 \(\dfrac{5}{8}\)
2 \(\dfrac{8}{5}\)
3 \(\dfrac{3}{8}\)
4 \(\dfrac{8}{3}\)
CHXI02:STRUCTURE OF ATOM

307415 The number of quanta of radiations of frequency \({\rm{4}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{13}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) required to melt 100 g of ice is (The energy required to melt 1 g of ice is 350J)

1 \({\rm{1}}{{\rm{0}}^{{\rm{21}}}}\)
2 \({\rm{1113 \times 1}}{{\rm{0}}^{{\rm{21}}}}\)
3 \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
4 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
CHXI02:STRUCTURE OF ATOM

307416 Number of photons having wavelength 632.8 nm, emitted by 5 mW laser source in 1 second is

1 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{19}}}}\)
2 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{16}}}}\)
3 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{25}}}}\)
4 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{13}}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI02:STRUCTURE OF ATOM

307413 What would be the ratio of energy of a photon of frequency \(x\,{s^{ - 1}}\) to \(y\,{s^{ - 1}}\)?

1 \({\rm{xy}}\)
2 \({\rm{x/y}}\)
3 \({\rm{y/x}}\)
4 \({\rm{x + y}}\)
CHXI02:STRUCTURE OF ATOM

307414 A certain dye absorbs light of \(\lambda = 4000\mathop {\rm{A}}\limits^{\rm{^\circ }} \) and then fluorescences light of \(\lambda = 5000\) \( \mathop {\rm{A}}^{\circ} \)
Assuming that under given conditions \(50 \%\) of the absorbed energy is re-emitted out as fluorescence, calculate the ratio of the number of quanta emitted out to the number of quanta absorbed.

1 \(\dfrac{5}{8}\)
2 \(\dfrac{8}{5}\)
3 \(\dfrac{3}{8}\)
4 \(\dfrac{8}{3}\)
CHXI02:STRUCTURE OF ATOM

307415 The number of quanta of radiations of frequency \({\rm{4}}{\rm{.75 \times 1}}{{\rm{0}}^{{\rm{13}}}}{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) required to melt 100 g of ice is (The energy required to melt 1 g of ice is 350J)

1 \({\rm{1}}{{\rm{0}}^{{\rm{21}}}}\)
2 \({\rm{1113 \times 1}}{{\rm{0}}^{{\rm{21}}}}\)
3 \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
4 \({\rm{2 \times 1}}{{\rm{0}}^{{\rm{23}}}}\)
CHXI02:STRUCTURE OF ATOM

307416 Number of photons having wavelength 632.8 nm, emitted by 5 mW laser source in 1 second is

1 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{19}}}}\)
2 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{16}}}}\)
3 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{25}}}}\)
4 \({\rm{1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{13}}}}\)