307387 The energy absorbed by each molecule \(\left( {{{\rm{A}}_{\rm{2}}}} \right)\) of a substance is \({\rm{4}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\) and bond energy(BE) per molecule is \({\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\). The kinetic energy of the molecule per atom will be
307390 The potential to be applied to bring the photoelectron to rest which was emitted from a metal surface of work function 2.1 eV on irradiating it with radiation of frequency \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{14}}}}{\rm{Hz}}\) is \({\rm{(1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J)}}\)
307387 The energy absorbed by each molecule \(\left( {{{\rm{A}}_{\rm{2}}}} \right)\) of a substance is \({\rm{4}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\) and bond energy(BE) per molecule is \({\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\). The kinetic energy of the molecule per atom will be
307390 The potential to be applied to bring the photoelectron to rest which was emitted from a metal surface of work function 2.1 eV on irradiating it with radiation of frequency \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{14}}}}{\rm{Hz}}\) is \({\rm{(1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J)}}\)
307387 The energy absorbed by each molecule \(\left( {{{\rm{A}}_{\rm{2}}}} \right)\) of a substance is \({\rm{4}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\) and bond energy(BE) per molecule is \({\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\). The kinetic energy of the molecule per atom will be
307390 The potential to be applied to bring the photoelectron to rest which was emitted from a metal surface of work function 2.1 eV on irradiating it with radiation of frequency \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{14}}}}{\rm{Hz}}\) is \({\rm{(1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J)}}\)
307387 The energy absorbed by each molecule \(\left( {{{\rm{A}}_{\rm{2}}}} \right)\) of a substance is \({\rm{4}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\) and bond energy(BE) per molecule is \({\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\). The kinetic energy of the molecule per atom will be
307390 The potential to be applied to bring the photoelectron to rest which was emitted from a metal surface of work function 2.1 eV on irradiating it with radiation of frequency \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{14}}}}{\rm{Hz}}\) is \({\rm{(1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J)}}\)
307387 The energy absorbed by each molecule \(\left( {{{\rm{A}}_{\rm{2}}}} \right)\) of a substance is \({\rm{4}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\) and bond energy(BE) per molecule is \({\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J}}\). The kinetic energy of the molecule per atom will be
307390 The potential to be applied to bring the photoelectron to rest which was emitted from a metal surface of work function 2.1 eV on irradiating it with radiation of frequency \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{14}}}}{\rm{Hz}}\) is \({\rm{(1eV = 1}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}{\rm{J)}}\)