Particle Nature of Electromagnetic Radiation
CHXI02:STRUCTURE OF ATOM

307430 Which of the following relates to photons both as wave motion and stream of particles?

1 \({\rm{Interference}}\)
2 \({\rm{E = m}}{{\rm{c}}^{\rm{2}}}\)
3 \({\rm{Diffraction}}\)
4 \({\rm{E = hv}}\)
CHXI02:STRUCTURE OF ATOM

307431 Calculate the wavelength of light required to break the bond between two chlorine atoms in a chlorine molecule. \({\rm{The}}\,{\rm{Cl}} - {\rm{Cl}}\,{\rm{bond}}\,{\rm{energy}}\,{\rm{is}}\,{\rm{243\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot \)
\(\left( {{\rm{h}} = 6.6 \times {{10}^{ - 34}}{\rm{Js}},{\rm{c}} = 3 \times {{10}^8}\;{\rm{m}}/{\rm{s}}} \right.\), Avogadro's number \(\mathrm{h}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 \(4.91 \times 10^{-7} \mathrm{~m}\)
2 \(4.11 \times 10^{-6} \mathrm{~m}\)
3 \(8.81 \times 10^{-31} \mathrm{~m}\)
4 \(6.26 \times 10^{-21} \mathrm{~m}\)
CHXI02:STRUCTURE OF ATOM

307432 Calculate the energy in joule corresponding to light of wavelength 45 nm: (Planck’s constant \({\rm{h = 6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}\,{\rm{Js;}}\) speed of light \({\rm{c = 3 \times 1}}{{\rm{0}}^{\rm{8}}}{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{15}}}}\)
2 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)
3 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}\)
4 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\)
CHXI02:STRUCTURE OF ATOM

307433 Nitrogen laser produces a radiation at a wavelength of \(\mathrm{337.1 \mathrm{~nm}}\). If the number of photons emitted is \(\mathrm{5.6 \times 10^{24}}\). Calculate the power of this laser.

1 \(\mathrm{3.33 \times 10^{6} \mathrm{~J}}\)
2 \(\mathrm{3.33 \times 10^{5} \mathrm{~J}}\)
3 \(\mathrm{1.56 \times 10^{6} \mathrm{~J}}\)
4 \(\mathrm{15.6 \times 10^{8} \mathrm{~J}}\)
CHXI02:STRUCTURE OF ATOM

307430 Which of the following relates to photons both as wave motion and stream of particles?

1 \({\rm{Interference}}\)
2 \({\rm{E = m}}{{\rm{c}}^{\rm{2}}}\)
3 \({\rm{Diffraction}}\)
4 \({\rm{E = hv}}\)
CHXI02:STRUCTURE OF ATOM

307431 Calculate the wavelength of light required to break the bond between two chlorine atoms in a chlorine molecule. \({\rm{The}}\,{\rm{Cl}} - {\rm{Cl}}\,{\rm{bond}}\,{\rm{energy}}\,{\rm{is}}\,{\rm{243\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot \)
\(\left( {{\rm{h}} = 6.6 \times {{10}^{ - 34}}{\rm{Js}},{\rm{c}} = 3 \times {{10}^8}\;{\rm{m}}/{\rm{s}}} \right.\), Avogadro's number \(\mathrm{h}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 \(4.91 \times 10^{-7} \mathrm{~m}\)
2 \(4.11 \times 10^{-6} \mathrm{~m}\)
3 \(8.81 \times 10^{-31} \mathrm{~m}\)
4 \(6.26 \times 10^{-21} \mathrm{~m}\)
CHXI02:STRUCTURE OF ATOM

307432 Calculate the energy in joule corresponding to light of wavelength 45 nm: (Planck’s constant \({\rm{h = 6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}\,{\rm{Js;}}\) speed of light \({\rm{c = 3 \times 1}}{{\rm{0}}^{\rm{8}}}{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{15}}}}\)
2 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)
3 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}\)
4 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\)
CHXI02:STRUCTURE OF ATOM

307433 Nitrogen laser produces a radiation at a wavelength of \(\mathrm{337.1 \mathrm{~nm}}\). If the number of photons emitted is \(\mathrm{5.6 \times 10^{24}}\). Calculate the power of this laser.

1 \(\mathrm{3.33 \times 10^{6} \mathrm{~J}}\)
2 \(\mathrm{3.33 \times 10^{5} \mathrm{~J}}\)
3 \(\mathrm{1.56 \times 10^{6} \mathrm{~J}}\)
4 \(\mathrm{15.6 \times 10^{8} \mathrm{~J}}\)
CHXI02:STRUCTURE OF ATOM

307430 Which of the following relates to photons both as wave motion and stream of particles?

1 \({\rm{Interference}}\)
2 \({\rm{E = m}}{{\rm{c}}^{\rm{2}}}\)
3 \({\rm{Diffraction}}\)
4 \({\rm{E = hv}}\)
CHXI02:STRUCTURE OF ATOM

307431 Calculate the wavelength of light required to break the bond between two chlorine atoms in a chlorine molecule. \({\rm{The}}\,{\rm{Cl}} - {\rm{Cl}}\,{\rm{bond}}\,{\rm{energy}}\,{\rm{is}}\,{\rm{243\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot \)
\(\left( {{\rm{h}} = 6.6 \times {{10}^{ - 34}}{\rm{Js}},{\rm{c}} = 3 \times {{10}^8}\;{\rm{m}}/{\rm{s}}} \right.\), Avogadro's number \(\mathrm{h}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 \(4.91 \times 10^{-7} \mathrm{~m}\)
2 \(4.11 \times 10^{-6} \mathrm{~m}\)
3 \(8.81 \times 10^{-31} \mathrm{~m}\)
4 \(6.26 \times 10^{-21} \mathrm{~m}\)
CHXI02:STRUCTURE OF ATOM

307432 Calculate the energy in joule corresponding to light of wavelength 45 nm: (Planck’s constant \({\rm{h = 6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}\,{\rm{Js;}}\) speed of light \({\rm{c = 3 \times 1}}{{\rm{0}}^{\rm{8}}}{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{15}}}}\)
2 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)
3 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}\)
4 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\)
CHXI02:STRUCTURE OF ATOM

307433 Nitrogen laser produces a radiation at a wavelength of \(\mathrm{337.1 \mathrm{~nm}}\). If the number of photons emitted is \(\mathrm{5.6 \times 10^{24}}\). Calculate the power of this laser.

1 \(\mathrm{3.33 \times 10^{6} \mathrm{~J}}\)
2 \(\mathrm{3.33 \times 10^{5} \mathrm{~J}}\)
3 \(\mathrm{1.56 \times 10^{6} \mathrm{~J}}\)
4 \(\mathrm{15.6 \times 10^{8} \mathrm{~J}}\)
CHXI02:STRUCTURE OF ATOM

307430 Which of the following relates to photons both as wave motion and stream of particles?

1 \({\rm{Interference}}\)
2 \({\rm{E = m}}{{\rm{c}}^{\rm{2}}}\)
3 \({\rm{Diffraction}}\)
4 \({\rm{E = hv}}\)
CHXI02:STRUCTURE OF ATOM

307431 Calculate the wavelength of light required to break the bond between two chlorine atoms in a chlorine molecule. \({\rm{The}}\,{\rm{Cl}} - {\rm{Cl}}\,{\rm{bond}}\,{\rm{energy}}\,{\rm{is}}\,{\rm{243\;kJ\;mo}}{{\rm{l}}^{{\rm{ - 1}}}} \cdot \)
\(\left( {{\rm{h}} = 6.6 \times {{10}^{ - 34}}{\rm{Js}},{\rm{c}} = 3 \times {{10}^8}\;{\rm{m}}/{\rm{s}}} \right.\), Avogadro's number \(\mathrm{h}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\) )

1 \(4.91 \times 10^{-7} \mathrm{~m}\)
2 \(4.11 \times 10^{-6} \mathrm{~m}\)
3 \(8.81 \times 10^{-31} \mathrm{~m}\)
4 \(6.26 \times 10^{-21} \mathrm{~m}\)
CHXI02:STRUCTURE OF ATOM

307432 Calculate the energy in joule corresponding to light of wavelength 45 nm: (Planck’s constant \({\rm{h = 6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}\,{\rm{Js;}}\) speed of light \({\rm{c = 3 \times 1}}{{\rm{0}}^{\rm{8}}}{\rm{m}}{{\rm{s}}^{{\rm{ - 1}}}}{\rm{)}}\)

1 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{15}}}}\)
2 \({\rm{6}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{11}}}}\)
3 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 15}}}}\)
4 \({\rm{4}}{\rm{.42 \times 1}}{{\rm{0}}^{{\rm{ - 18}}}}\)
CHXI02:STRUCTURE OF ATOM

307433 Nitrogen laser produces a radiation at a wavelength of \(\mathrm{337.1 \mathrm{~nm}}\). If the number of photons emitted is \(\mathrm{5.6 \times 10^{24}}\). Calculate the power of this laser.

1 \(\mathrm{3.33 \times 10^{6} \mathrm{~J}}\)
2 \(\mathrm{3.33 \times 10^{5} \mathrm{~J}}\)
3 \(\mathrm{1.56 \times 10^{6} \mathrm{~J}}\)
4 \(\mathrm{15.6 \times 10^{8} \mathrm{~J}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here