307423 The value of Planck’s constant is \({\rm{6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\). The speed of light is \(3 \times {10^{17}}nm\,{s^{ - 1}}\). Which value is closest to the wavelength in nanometer of a quantum of light with frequency of \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{15}}}}{{\rm{s}}^{{\rm{ - 1}}}}\)?
307423 The value of Planck’s constant is \({\rm{6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\). The speed of light is \(3 \times {10^{17}}nm\,{s^{ - 1}}\). Which value is closest to the wavelength in nanometer of a quantum of light with frequency of \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{15}}}}{{\rm{s}}^{{\rm{ - 1}}}}\)?
307423 The value of Planck’s constant is \({\rm{6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\). The speed of light is \(3 \times {10^{17}}nm\,{s^{ - 1}}\). Which value is closest to the wavelength in nanometer of a quantum of light with frequency of \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{15}}}}{{\rm{s}}^{{\rm{ - 1}}}}\)?
307423 The value of Planck’s constant is \({\rm{6}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 34}}}}{\rm{Js}}\). The speed of light is \(3 \times {10^{17}}nm\,{s^{ - 1}}\). Which value is closest to the wavelength in nanometer of a quantum of light with frequency of \({\rm{6 \times 1}}{{\rm{0}}^{{\rm{15}}}}{{\rm{s}}^{{\rm{ - 1}}}}\)?