307163
The energy of an electron moving in \({{\rm{n}}^{{\rm{th}}}}\) Bohr’s orbit of an element is given by \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6}}}}{{{{\rm{n}}^{\rm{2}}}}}{{\rm{Z}}^{\rm{2}}}\) eV/atom. The graph of \({\rm{E}}\;{\rm{vs}}\;{{\rm{Z}}^{\rm{2}}}\)(keeping ‘n’ constant) will be
307163
The energy of an electron moving in \({{\rm{n}}^{{\rm{th}}}}\) Bohr’s orbit of an element is given by \({{\rm{E}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{ - 13}}{\rm{.6}}}}{{{{\rm{n}}^{\rm{2}}}}}{{\rm{Z}}^{\rm{2}}}\) eV/atom. The graph of \({\rm{E}}\;{\rm{vs}}\;{{\rm{Z}}^{\rm{2}}}\)(keeping ‘n’ constant) will be