307201
The radius of the \(2^{\text {nd }}\) orbit of \(\mathrm{Li}^{2+}\) is x. The expected radius of the \(3^{\text {rd }}\) orbit of \(\mathrm{Be}^{3+}\) is
1 \(\dfrac{4}{9} \mathrm{x}\)
2 \(\dfrac{16}{27} x\)
3 \(\dfrac{9}{4} x\)
4 \(\dfrac{27}{16} x\)
Explanation:
Radius of \({\mathrm{2^{\text {nd }}}}\) orbit of \({\mathrm{\mathrm{Li}^{2+}=\dfrac{\mathrm{n}^{2}}{\mathrm{Z}} \times \mathrm{r}_{0}}}\) \({\mathrm{\mathrm{x}=\dfrac{2 \times 2}{3} \times \mathrm{r}_{0} \Rightarrow \mathrm{r}_{0}=\dfrac{3 \mathrm{x}}{4}}}\) Radius of \({\mathrm{3^{\text {rd }}}}\) orbit of \({\mathrm{B^{+3}=\dfrac{n^{2}}{Z}}}\). \({\mathrm{r_{o}}}\) \({\mathrm{=\dfrac{3 \times 3}{4} \times \dfrac{3 x}{4}=\dfrac{27}{16} \mathrm{x}}}\)
JEE - 2023
CHXI02:STRUCTURE OF ATOM
307202
The radius of second stationary orbit in Bohr’s atom is R. The radius of 3rd orbit will be
307203
The radius of the first orbit of hydrogen atom is \(\mathrm{0.52 \times 10^{-8} \mathrm{~cm}}\). The radius of the first orbit of \(\mathrm{\mathrm{He}^{+}}\)ion is
307201
The radius of the \(2^{\text {nd }}\) orbit of \(\mathrm{Li}^{2+}\) is x. The expected radius of the \(3^{\text {rd }}\) orbit of \(\mathrm{Be}^{3+}\) is
1 \(\dfrac{4}{9} \mathrm{x}\)
2 \(\dfrac{16}{27} x\)
3 \(\dfrac{9}{4} x\)
4 \(\dfrac{27}{16} x\)
Explanation:
Radius of \({\mathrm{2^{\text {nd }}}}\) orbit of \({\mathrm{\mathrm{Li}^{2+}=\dfrac{\mathrm{n}^{2}}{\mathrm{Z}} \times \mathrm{r}_{0}}}\) \({\mathrm{\mathrm{x}=\dfrac{2 \times 2}{3} \times \mathrm{r}_{0} \Rightarrow \mathrm{r}_{0}=\dfrac{3 \mathrm{x}}{4}}}\) Radius of \({\mathrm{3^{\text {rd }}}}\) orbit of \({\mathrm{B^{+3}=\dfrac{n^{2}}{Z}}}\). \({\mathrm{r_{o}}}\) \({\mathrm{=\dfrac{3 \times 3}{4} \times \dfrac{3 x}{4}=\dfrac{27}{16} \mathrm{x}}}\)
JEE - 2023
CHXI02:STRUCTURE OF ATOM
307202
The radius of second stationary orbit in Bohr’s atom is R. The radius of 3rd orbit will be
307203
The radius of the first orbit of hydrogen atom is \(\mathrm{0.52 \times 10^{-8} \mathrm{~cm}}\). The radius of the first orbit of \(\mathrm{\mathrm{He}^{+}}\)ion is
307201
The radius of the \(2^{\text {nd }}\) orbit of \(\mathrm{Li}^{2+}\) is x. The expected radius of the \(3^{\text {rd }}\) orbit of \(\mathrm{Be}^{3+}\) is
1 \(\dfrac{4}{9} \mathrm{x}\)
2 \(\dfrac{16}{27} x\)
3 \(\dfrac{9}{4} x\)
4 \(\dfrac{27}{16} x\)
Explanation:
Radius of \({\mathrm{2^{\text {nd }}}}\) orbit of \({\mathrm{\mathrm{Li}^{2+}=\dfrac{\mathrm{n}^{2}}{\mathrm{Z}} \times \mathrm{r}_{0}}}\) \({\mathrm{\mathrm{x}=\dfrac{2 \times 2}{3} \times \mathrm{r}_{0} \Rightarrow \mathrm{r}_{0}=\dfrac{3 \mathrm{x}}{4}}}\) Radius of \({\mathrm{3^{\text {rd }}}}\) orbit of \({\mathrm{B^{+3}=\dfrac{n^{2}}{Z}}}\). \({\mathrm{r_{o}}}\) \({\mathrm{=\dfrac{3 \times 3}{4} \times \dfrac{3 x}{4}=\dfrac{27}{16} \mathrm{x}}}\)
JEE - 2023
CHXI02:STRUCTURE OF ATOM
307202
The radius of second stationary orbit in Bohr’s atom is R. The radius of 3rd orbit will be
307203
The radius of the first orbit of hydrogen atom is \(\mathrm{0.52 \times 10^{-8} \mathrm{~cm}}\). The radius of the first orbit of \(\mathrm{\mathrm{He}^{+}}\)ion is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
CHXI02:STRUCTURE OF ATOM
307201
The radius of the \(2^{\text {nd }}\) orbit of \(\mathrm{Li}^{2+}\) is x. The expected radius of the \(3^{\text {rd }}\) orbit of \(\mathrm{Be}^{3+}\) is
1 \(\dfrac{4}{9} \mathrm{x}\)
2 \(\dfrac{16}{27} x\)
3 \(\dfrac{9}{4} x\)
4 \(\dfrac{27}{16} x\)
Explanation:
Radius of \({\mathrm{2^{\text {nd }}}}\) orbit of \({\mathrm{\mathrm{Li}^{2+}=\dfrac{\mathrm{n}^{2}}{\mathrm{Z}} \times \mathrm{r}_{0}}}\) \({\mathrm{\mathrm{x}=\dfrac{2 \times 2}{3} \times \mathrm{r}_{0} \Rightarrow \mathrm{r}_{0}=\dfrac{3 \mathrm{x}}{4}}}\) Radius of \({\mathrm{3^{\text {rd }}}}\) orbit of \({\mathrm{B^{+3}=\dfrac{n^{2}}{Z}}}\). \({\mathrm{r_{o}}}\) \({\mathrm{=\dfrac{3 \times 3}{4} \times \dfrac{3 x}{4}=\dfrac{27}{16} \mathrm{x}}}\)
JEE - 2023
CHXI02:STRUCTURE OF ATOM
307202
The radius of second stationary orbit in Bohr’s atom is R. The radius of 3rd orbit will be
307203
The radius of the first orbit of hydrogen atom is \(\mathrm{0.52 \times 10^{-8} \mathrm{~cm}}\). The radius of the first orbit of \(\mathrm{\mathrm{He}^{+}}\)ion is