306980
\({\rm{A + 2B + 3C}} \to {\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\)
Reaction of 6.0 g of A, \({\rm{6}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{23}}}}\) atoms of B, and 0.036 mol of C yields 4.8 g of compound \({\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\). If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is \(\left( {{\rm{Avogadro}}{\mkern 1mu} {\mkern 1mu} {\rm{no}}{\rm{. = 6 \times 1}}{{\rm{0}}^{{\rm{23}}}}} \right)\):
306982 According to following reaction,\(\mathrm{A}+\mathrm{BO}_{3} \rightarrow \mathrm{A}_{3} \mathrm{O}_{4}+\mathrm{B}_{2} \mathrm{O}_{3}\) the number of moles of \(\mathrm{A}_{3} \mathrm{O}_{4}\) produced if 1 mole of A is mixed with 1 mole of \(\mathrm{BO}_{3}\) is
306980
\({\rm{A + 2B + 3C}} \to {\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\)
Reaction of 6.0 g of A, \({\rm{6}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{23}}}}\) atoms of B, and 0.036 mol of C yields 4.8 g of compound \({\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\). If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is \(\left( {{\rm{Avogadro}}{\mkern 1mu} {\mkern 1mu} {\rm{no}}{\rm{. = 6 \times 1}}{{\rm{0}}^{{\rm{23}}}}} \right)\):
306982 According to following reaction,\(\mathrm{A}+\mathrm{BO}_{3} \rightarrow \mathrm{A}_{3} \mathrm{O}_{4}+\mathrm{B}_{2} \mathrm{O}_{3}\) the number of moles of \(\mathrm{A}_{3} \mathrm{O}_{4}\) produced if 1 mole of A is mixed with 1 mole of \(\mathrm{BO}_{3}\) is
306980
\({\rm{A + 2B + 3C}} \to {\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\)
Reaction of 6.0 g of A, \({\rm{6}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{23}}}}\) atoms of B, and 0.036 mol of C yields 4.8 g of compound \({\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\). If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is \(\left( {{\rm{Avogadro}}{\mkern 1mu} {\mkern 1mu} {\rm{no}}{\rm{. = 6 \times 1}}{{\rm{0}}^{{\rm{23}}}}} \right)\):
306982 According to following reaction,\(\mathrm{A}+\mathrm{BO}_{3} \rightarrow \mathrm{A}_{3} \mathrm{O}_{4}+\mathrm{B}_{2} \mathrm{O}_{3}\) the number of moles of \(\mathrm{A}_{3} \mathrm{O}_{4}\) produced if 1 mole of A is mixed with 1 mole of \(\mathrm{BO}_{3}\) is
306980
\({\rm{A + 2B + 3C}} \to {\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\)
Reaction of 6.0 g of A, \({\rm{6}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{23}}}}\) atoms of B, and 0.036 mol of C yields 4.8 g of compound \({\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\). If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is \(\left( {{\rm{Avogadro}}{\mkern 1mu} {\mkern 1mu} {\rm{no}}{\rm{. = 6 \times 1}}{{\rm{0}}^{{\rm{23}}}}} \right)\):
306982 According to following reaction,\(\mathrm{A}+\mathrm{BO}_{3} \rightarrow \mathrm{A}_{3} \mathrm{O}_{4}+\mathrm{B}_{2} \mathrm{O}_{3}\) the number of moles of \(\mathrm{A}_{3} \mathrm{O}_{4}\) produced if 1 mole of A is mixed with 1 mole of \(\mathrm{BO}_{3}\) is
306980
\({\rm{A + 2B + 3C}} \to {\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\)
Reaction of 6.0 g of A, \({\rm{6}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{23}}}}\) atoms of B, and 0.036 mol of C yields 4.8 g of compound \({\rm{A}}{{\rm{B}}_{\rm{2}}}{{\rm{C}}_{\rm{3}}}\). If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is \(\left( {{\rm{Avogadro}}{\mkern 1mu} {\mkern 1mu} {\rm{no}}{\rm{. = 6 \times 1}}{{\rm{0}}^{{\rm{23}}}}} \right)\):
306982 According to following reaction,\(\mathrm{A}+\mathrm{BO}_{3} \rightarrow \mathrm{A}_{3} \mathrm{O}_{4}+\mathrm{B}_{2} \mathrm{O}_{3}\) the number of moles of \(\mathrm{A}_{3} \mathrm{O}_{4}\) produced if 1 mole of A is mixed with 1 mole of \(\mathrm{BO}_{3}\) is