Continuous Charge Distribution
PHXII01:ELECTRIC CHARGES AND FIELDS

358037 A ring of charge with radius 0.5 \(m\) has \(0.002\,\pi m\) gap. If the ring carries a charge of \( + 1C\), the electric field at the center is

1 \(7.5 \times {10^7}N{C^{ - 1}}\)
2 \(7.2 \times {10^7}N{C^{ - 1}}\)
3 \(6.2 \times {10^7}N{C^{ - 1}}\)
4 \(6.5 \times {10^7}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358038 Two parallel infinite line charges with linear charge densities \( + \lambda \,C/m\,{\rm{and}}\, - \lambda \,C/m\) are placed at a distance of 2\(R\) in free space. What is the electric field mid-way between the two line charges?

1 \({\rm{Zero}}\)
2 \(\frac{{2\lambda }}{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
3 \(\frac{\lambda }{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
4 \(\frac{\lambda }{{2\pi {\varepsilon _0}R}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358039 A particle of charge \(-q\) and mass \(m\) moves in a circle of radius \(r\) around an infinitely long line charge of linear density \(+\lambda\). Then time period will be given as (Consider \(k\) as Coulomb's constant)

1 \(T=2 \pi r \sqrt{\dfrac{m}{2 k \lambda q}}\)
2 \(T=\dfrac{1}{2 \pi} \sqrt{\dfrac{2 k \lambda q}{m}}\)
3 \(T^{2}=\dfrac{4 \pi^{2} m}{2 k \lambda q} r^{3}\)
4 \(T=\dfrac{1}{2 \pi r} \sqrt{\dfrac{m}{2 k \lambda q}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358040 An infinitely long thin straight wire has uniform charge density of \(\frac{1}{4} \times {10^{ - 2}}C{m^{ - 1}}\). What is the magnitude of electric field at a distance 20 \(cm\) from the axis of the wire ?

1 \(2.25 \times {10^8}N{C^{ - 1}}\)
2 \(9 \times {10^8}N{C^{ - 1}}\)
3 \(1.12 \times {10^8}N{C^{ - 1}}\)
4 \(4.5 \times {10^8}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358037 A ring of charge with radius 0.5 \(m\) has \(0.002\,\pi m\) gap. If the ring carries a charge of \( + 1C\), the electric field at the center is

1 \(7.5 \times {10^7}N{C^{ - 1}}\)
2 \(7.2 \times {10^7}N{C^{ - 1}}\)
3 \(6.2 \times {10^7}N{C^{ - 1}}\)
4 \(6.5 \times {10^7}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358038 Two parallel infinite line charges with linear charge densities \( + \lambda \,C/m\,{\rm{and}}\, - \lambda \,C/m\) are placed at a distance of 2\(R\) in free space. What is the electric field mid-way between the two line charges?

1 \({\rm{Zero}}\)
2 \(\frac{{2\lambda }}{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
3 \(\frac{\lambda }{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
4 \(\frac{\lambda }{{2\pi {\varepsilon _0}R}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358039 A particle of charge \(-q\) and mass \(m\) moves in a circle of radius \(r\) around an infinitely long line charge of linear density \(+\lambda\). Then time period will be given as (Consider \(k\) as Coulomb's constant)

1 \(T=2 \pi r \sqrt{\dfrac{m}{2 k \lambda q}}\)
2 \(T=\dfrac{1}{2 \pi} \sqrt{\dfrac{2 k \lambda q}{m}}\)
3 \(T^{2}=\dfrac{4 \pi^{2} m}{2 k \lambda q} r^{3}\)
4 \(T=\dfrac{1}{2 \pi r} \sqrt{\dfrac{m}{2 k \lambda q}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358040 An infinitely long thin straight wire has uniform charge density of \(\frac{1}{4} \times {10^{ - 2}}C{m^{ - 1}}\). What is the magnitude of electric field at a distance 20 \(cm\) from the axis of the wire ?

1 \(2.25 \times {10^8}N{C^{ - 1}}\)
2 \(9 \times {10^8}N{C^{ - 1}}\)
3 \(1.12 \times {10^8}N{C^{ - 1}}\)
4 \(4.5 \times {10^8}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358037 A ring of charge with radius 0.5 \(m\) has \(0.002\,\pi m\) gap. If the ring carries a charge of \( + 1C\), the electric field at the center is

1 \(7.5 \times {10^7}N{C^{ - 1}}\)
2 \(7.2 \times {10^7}N{C^{ - 1}}\)
3 \(6.2 \times {10^7}N{C^{ - 1}}\)
4 \(6.5 \times {10^7}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358038 Two parallel infinite line charges with linear charge densities \( + \lambda \,C/m\,{\rm{and}}\, - \lambda \,C/m\) are placed at a distance of 2\(R\) in free space. What is the electric field mid-way between the two line charges?

1 \({\rm{Zero}}\)
2 \(\frac{{2\lambda }}{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
3 \(\frac{\lambda }{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
4 \(\frac{\lambda }{{2\pi {\varepsilon _0}R}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358039 A particle of charge \(-q\) and mass \(m\) moves in a circle of radius \(r\) around an infinitely long line charge of linear density \(+\lambda\). Then time period will be given as (Consider \(k\) as Coulomb's constant)

1 \(T=2 \pi r \sqrt{\dfrac{m}{2 k \lambda q}}\)
2 \(T=\dfrac{1}{2 \pi} \sqrt{\dfrac{2 k \lambda q}{m}}\)
3 \(T^{2}=\dfrac{4 \pi^{2} m}{2 k \lambda q} r^{3}\)
4 \(T=\dfrac{1}{2 \pi r} \sqrt{\dfrac{m}{2 k \lambda q}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358040 An infinitely long thin straight wire has uniform charge density of \(\frac{1}{4} \times {10^{ - 2}}C{m^{ - 1}}\). What is the magnitude of electric field at a distance 20 \(cm\) from the axis of the wire ?

1 \(2.25 \times {10^8}N{C^{ - 1}}\)
2 \(9 \times {10^8}N{C^{ - 1}}\)
3 \(1.12 \times {10^8}N{C^{ - 1}}\)
4 \(4.5 \times {10^8}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358037 A ring of charge with radius 0.5 \(m\) has \(0.002\,\pi m\) gap. If the ring carries a charge of \( + 1C\), the electric field at the center is

1 \(7.5 \times {10^7}N{C^{ - 1}}\)
2 \(7.2 \times {10^7}N{C^{ - 1}}\)
3 \(6.2 \times {10^7}N{C^{ - 1}}\)
4 \(6.5 \times {10^7}N{C^{ - 1}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358038 Two parallel infinite line charges with linear charge densities \( + \lambda \,C/m\,{\rm{and}}\, - \lambda \,C/m\) are placed at a distance of 2\(R\) in free space. What is the electric field mid-way between the two line charges?

1 \({\rm{Zero}}\)
2 \(\frac{{2\lambda }}{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
3 \(\frac{\lambda }{{\pi {\varepsilon _0}R}}N{\rm{/}}C\)
4 \(\frac{\lambda }{{2\pi {\varepsilon _0}R}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358039 A particle of charge \(-q\) and mass \(m\) moves in a circle of radius \(r\) around an infinitely long line charge of linear density \(+\lambda\). Then time period will be given as (Consider \(k\) as Coulomb's constant)

1 \(T=2 \pi r \sqrt{\dfrac{m}{2 k \lambda q}}\)
2 \(T=\dfrac{1}{2 \pi} \sqrt{\dfrac{2 k \lambda q}{m}}\)
3 \(T^{2}=\dfrac{4 \pi^{2} m}{2 k \lambda q} r^{3}\)
4 \(T=\dfrac{1}{2 \pi r} \sqrt{\dfrac{m}{2 k \lambda q}}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

358040 An infinitely long thin straight wire has uniform charge density of \(\frac{1}{4} \times {10^{ - 2}}C{m^{ - 1}}\). What is the magnitude of electric field at a distance 20 \(cm\) from the axis of the wire ?

1 \(2.25 \times {10^8}N{C^{ - 1}}\)
2 \(9 \times {10^8}N{C^{ - 1}}\)
3 \(1.12 \times {10^8}N{C^{ - 1}}\)
4 \(4.5 \times {10^8}N{C^{ - 1}}\)