Applications of Gauss's Law
PHXII01:ELECTRIC CHARGES AND FIELDS

357954 Let \(\sigma\) be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region \(E_{I}, E_{I I}\) and \(E_{I I I}\) are
supporting img

1 \(\vec{E}_{I}=0, \vec{E}_{I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I I}=0\)
2 \(\vec{E}_{I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}\)
3 \(\vec{E}_{I}=-\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}\)
4 \(\vec{E}_{I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357955 Two parallel large thin metal sheets have equal surface charge densities \(\left( {\sigma = 26.4 \times {{10}^{ - 12}}C/{m^2}} \right)\) of opposite signs. The electric field between these sheets is

1 \(1.5N{\rm{/}}C\)
2 \(1.5 \times {10^{ - 10}}N{\rm{/}}C\)
3 \(3N{\rm{/}}C\)
4 \(3 \times {10^{ - 10}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357956 If the uniform surface charge density of the infinite plane sheet is \(\sigma\), electric field near the surface will be

1 \(\dfrac{\sigma}{2 \varepsilon_{0}}\)
2 \(\dfrac{3 \sigma}{\varepsilon_{0}}\)
3 \(\dfrac{\sigma}{\varepsilon_{0}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

357957 Three infinitely long charged sheets are placed as shown in figure. The electric field at point \(P\) is
supporting img

1 \( - \frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
2 \(\frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
3 \( - \frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
4 \(\frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII01:ELECTRIC CHARGES AND FIELDS

357954 Let \(\sigma\) be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region \(E_{I}, E_{I I}\) and \(E_{I I I}\) are
supporting img

1 \(\vec{E}_{I}=0, \vec{E}_{I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I I}=0\)
2 \(\vec{E}_{I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}\)
3 \(\vec{E}_{I}=-\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}\)
4 \(\vec{E}_{I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357955 Two parallel large thin metal sheets have equal surface charge densities \(\left( {\sigma = 26.4 \times {{10}^{ - 12}}C/{m^2}} \right)\) of opposite signs. The electric field between these sheets is

1 \(1.5N{\rm{/}}C\)
2 \(1.5 \times {10^{ - 10}}N{\rm{/}}C\)
3 \(3N{\rm{/}}C\)
4 \(3 \times {10^{ - 10}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357956 If the uniform surface charge density of the infinite plane sheet is \(\sigma\), electric field near the surface will be

1 \(\dfrac{\sigma}{2 \varepsilon_{0}}\)
2 \(\dfrac{3 \sigma}{\varepsilon_{0}}\)
3 \(\dfrac{\sigma}{\varepsilon_{0}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

357957 Three infinitely long charged sheets are placed as shown in figure. The electric field at point \(P\) is
supporting img

1 \( - \frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
2 \(\frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
3 \( - \frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
4 \(\frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357954 Let \(\sigma\) be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region \(E_{I}, E_{I I}\) and \(E_{I I I}\) are
supporting img

1 \(\vec{E}_{I}=0, \vec{E}_{I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I I}=0\)
2 \(\vec{E}_{I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}\)
3 \(\vec{E}_{I}=-\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}\)
4 \(\vec{E}_{I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357955 Two parallel large thin metal sheets have equal surface charge densities \(\left( {\sigma = 26.4 \times {{10}^{ - 12}}C/{m^2}} \right)\) of opposite signs. The electric field between these sheets is

1 \(1.5N{\rm{/}}C\)
2 \(1.5 \times {10^{ - 10}}N{\rm{/}}C\)
3 \(3N{\rm{/}}C\)
4 \(3 \times {10^{ - 10}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357956 If the uniform surface charge density of the infinite plane sheet is \(\sigma\), electric field near the surface will be

1 \(\dfrac{\sigma}{2 \varepsilon_{0}}\)
2 \(\dfrac{3 \sigma}{\varepsilon_{0}}\)
3 \(\dfrac{\sigma}{\varepsilon_{0}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

357957 Three infinitely long charged sheets are placed as shown in figure. The electric field at point \(P\) is
supporting img

1 \( - \frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
2 \(\frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
3 \( - \frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
4 \(\frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357954 Let \(\sigma\) be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region \(E_{I}, E_{I I}\) and \(E_{I I I}\) are
supporting img

1 \(\vec{E}_{I}=0, \vec{E}_{I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I I}=0\)
2 \(\vec{E}_{I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{2 \sigma}{\epsilon_{0}} \hat{n}\)
3 \(\vec{E}_{I}=-\dfrac{\sigma}{\epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{\epsilon_{0}} \hat{n}\)
4 \(\vec{E}_{I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}, \vec{E}_{I I}=0, \vec{E}_{I I I}=\dfrac{\sigma}{2 \epsilon_{0}} \hat{n}\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357955 Two parallel large thin metal sheets have equal surface charge densities \(\left( {\sigma = 26.4 \times {{10}^{ - 12}}C/{m^2}} \right)\) of opposite signs. The electric field between these sheets is

1 \(1.5N{\rm{/}}C\)
2 \(1.5 \times {10^{ - 10}}N{\rm{/}}C\)
3 \(3N{\rm{/}}C\)
4 \(3 \times {10^{ - 10}}N{\rm{/}}C\)
PHXII01:ELECTRIC CHARGES AND FIELDS

357956 If the uniform surface charge density of the infinite plane sheet is \(\sigma\), electric field near the surface will be

1 \(\dfrac{\sigma}{2 \varepsilon_{0}}\)
2 \(\dfrac{3 \sigma}{\varepsilon_{0}}\)
3 \(\dfrac{\sigma}{\varepsilon_{0}}\)
4 None of these
PHXII01:ELECTRIC CHARGES AND FIELDS

357957 Three infinitely long charged sheets are placed as shown in figure. The electric field at point \(P\) is
supporting img

1 \( - \frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
2 \(\frac{{2\sigma }}{{{\varepsilon _0}}}\hat k\)
3 \( - \frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)
4 \(\frac{{4\sigma }}{{{\varepsilon _0}}}\hat k\)