Drift of Electrons and the Origin of Resistivity
PHXII03:CURRENT ELECTRICITY

357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))

1 \(\frac{1}{{16}}m\,{s^{ - 1}}\)
2 \(\frac{1}{{40}}m\,{s^{ - 1}}\)
3 \(\frac{1}{{80}}m\,{s^{ - 1}}\)
4 \(\frac{1}{{32}}m\,{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).

1 \(1.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
2 \(3.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
3 \(2.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
4 \(1.5 \times {10^{ - 4}}\;m{\rm{/}}s\)
PHXII03:CURRENT ELECTRICITY

357002 A conducting wire of cross-sectional area \(1\;c{m^2}\) has \(3 \times 10^{23}\) charge carriers per metre \({ }^{3}\). If the wire carries a current \(24\;\,mA,\) then drift velocity of carriers is

1 \(5 \times {10^{ - 2}}\;m{s^{ - 1}}\)
2 \(0.5\;m{s^{ - 1}}\)
3 \(5 \times {10^{ - 3}}\;m{s^{ - 1}}\)
4 \(5 \times {10^{ - 6}}\;m{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357003 The belt of an electrostatic generator is 50 \(cm\) wide and travels at 30 \(cm\)/\(sec\). The belt carries charge into the sphere at a rate corresponding to \({10^{ - 4}}\) ampere. What is the current density of the belt?

1 \(6.7 \times {10^{ - 4}}C{m^{ - 2}}/s\)
2 \(6.7 \times {10^{ - 5}}C{m^{ - 2}}/s\)
3 \(6.7 \times {10^{ - 8}}C{m^{ - 2}}/s\)
4 \(6.7 \times {10^{ - 7}}C{m^{ - 2}}/s\)
PHXII03:CURRENT ELECTRICITY

357004 The mean free path of electrons in a metal is \(4 \times {10^{ - 8}}m.\) The electric field which can give on an average \(2eV\) energy to an electron in the metal will be in unit of \(V{m^{ - 1}}\)

1 \(5 \times {10^{ - 11}}\)
2 \(8 \times {10^{ - 11}}\)
3 \(5 \times {10^7}\)
4 \(8 \times {10^7}\)
PHXII03:CURRENT ELECTRICITY

357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))

1 \(\frac{1}{{16}}m\,{s^{ - 1}}\)
2 \(\frac{1}{{40}}m\,{s^{ - 1}}\)
3 \(\frac{1}{{80}}m\,{s^{ - 1}}\)
4 \(\frac{1}{{32}}m\,{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).

1 \(1.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
2 \(3.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
3 \(2.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
4 \(1.5 \times {10^{ - 4}}\;m{\rm{/}}s\)
PHXII03:CURRENT ELECTRICITY

357002 A conducting wire of cross-sectional area \(1\;c{m^2}\) has \(3 \times 10^{23}\) charge carriers per metre \({ }^{3}\). If the wire carries a current \(24\;\,mA,\) then drift velocity of carriers is

1 \(5 \times {10^{ - 2}}\;m{s^{ - 1}}\)
2 \(0.5\;m{s^{ - 1}}\)
3 \(5 \times {10^{ - 3}}\;m{s^{ - 1}}\)
4 \(5 \times {10^{ - 6}}\;m{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357003 The belt of an electrostatic generator is 50 \(cm\) wide and travels at 30 \(cm\)/\(sec\). The belt carries charge into the sphere at a rate corresponding to \({10^{ - 4}}\) ampere. What is the current density of the belt?

1 \(6.7 \times {10^{ - 4}}C{m^{ - 2}}/s\)
2 \(6.7 \times {10^{ - 5}}C{m^{ - 2}}/s\)
3 \(6.7 \times {10^{ - 8}}C{m^{ - 2}}/s\)
4 \(6.7 \times {10^{ - 7}}C{m^{ - 2}}/s\)
PHXII03:CURRENT ELECTRICITY

357004 The mean free path of electrons in a metal is \(4 \times {10^{ - 8}}m.\) The electric field which can give on an average \(2eV\) energy to an electron in the metal will be in unit of \(V{m^{ - 1}}\)

1 \(5 \times {10^{ - 11}}\)
2 \(8 \times {10^{ - 11}}\)
3 \(5 \times {10^7}\)
4 \(8 \times {10^7}\)
PHXII03:CURRENT ELECTRICITY

357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))

1 \(\frac{1}{{16}}m\,{s^{ - 1}}\)
2 \(\frac{1}{{40}}m\,{s^{ - 1}}\)
3 \(\frac{1}{{80}}m\,{s^{ - 1}}\)
4 \(\frac{1}{{32}}m\,{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).

1 \(1.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
2 \(3.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
3 \(2.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
4 \(1.5 \times {10^{ - 4}}\;m{\rm{/}}s\)
PHXII03:CURRENT ELECTRICITY

357002 A conducting wire of cross-sectional area \(1\;c{m^2}\) has \(3 \times 10^{23}\) charge carriers per metre \({ }^{3}\). If the wire carries a current \(24\;\,mA,\) then drift velocity of carriers is

1 \(5 \times {10^{ - 2}}\;m{s^{ - 1}}\)
2 \(0.5\;m{s^{ - 1}}\)
3 \(5 \times {10^{ - 3}}\;m{s^{ - 1}}\)
4 \(5 \times {10^{ - 6}}\;m{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357003 The belt of an electrostatic generator is 50 \(cm\) wide and travels at 30 \(cm\)/\(sec\). The belt carries charge into the sphere at a rate corresponding to \({10^{ - 4}}\) ampere. What is the current density of the belt?

1 \(6.7 \times {10^{ - 4}}C{m^{ - 2}}/s\)
2 \(6.7 \times {10^{ - 5}}C{m^{ - 2}}/s\)
3 \(6.7 \times {10^{ - 8}}C{m^{ - 2}}/s\)
4 \(6.7 \times {10^{ - 7}}C{m^{ - 2}}/s\)
PHXII03:CURRENT ELECTRICITY

357004 The mean free path of electrons in a metal is \(4 \times {10^{ - 8}}m.\) The electric field which can give on an average \(2eV\) energy to an electron in the metal will be in unit of \(V{m^{ - 1}}\)

1 \(5 \times {10^{ - 11}}\)
2 \(8 \times {10^{ - 11}}\)
3 \(5 \times {10^7}\)
4 \(8 \times {10^7}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII03:CURRENT ELECTRICITY

357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))

1 \(\frac{1}{{16}}m\,{s^{ - 1}}\)
2 \(\frac{1}{{40}}m\,{s^{ - 1}}\)
3 \(\frac{1}{{80}}m\,{s^{ - 1}}\)
4 \(\frac{1}{{32}}m\,{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).

1 \(1.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
2 \(3.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
3 \(2.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
4 \(1.5 \times {10^{ - 4}}\;m{\rm{/}}s\)
PHXII03:CURRENT ELECTRICITY

357002 A conducting wire of cross-sectional area \(1\;c{m^2}\) has \(3 \times 10^{23}\) charge carriers per metre \({ }^{3}\). If the wire carries a current \(24\;\,mA,\) then drift velocity of carriers is

1 \(5 \times {10^{ - 2}}\;m{s^{ - 1}}\)
2 \(0.5\;m{s^{ - 1}}\)
3 \(5 \times {10^{ - 3}}\;m{s^{ - 1}}\)
4 \(5 \times {10^{ - 6}}\;m{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357003 The belt of an electrostatic generator is 50 \(cm\) wide and travels at 30 \(cm\)/\(sec\). The belt carries charge into the sphere at a rate corresponding to \({10^{ - 4}}\) ampere. What is the current density of the belt?

1 \(6.7 \times {10^{ - 4}}C{m^{ - 2}}/s\)
2 \(6.7 \times {10^{ - 5}}C{m^{ - 2}}/s\)
3 \(6.7 \times {10^{ - 8}}C{m^{ - 2}}/s\)
4 \(6.7 \times {10^{ - 7}}C{m^{ - 2}}/s\)
PHXII03:CURRENT ELECTRICITY

357004 The mean free path of electrons in a metal is \(4 \times {10^{ - 8}}m.\) The electric field which can give on an average \(2eV\) energy to an electron in the metal will be in unit of \(V{m^{ - 1}}\)

1 \(5 \times {10^{ - 11}}\)
2 \(8 \times {10^{ - 11}}\)
3 \(5 \times {10^7}\)
4 \(8 \times {10^7}\)
PHXII03:CURRENT ELECTRICITY

357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))

1 \(\frac{1}{{16}}m\,{s^{ - 1}}\)
2 \(\frac{1}{{40}}m\,{s^{ - 1}}\)
3 \(\frac{1}{{80}}m\,{s^{ - 1}}\)
4 \(\frac{1}{{32}}m\,{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).

1 \(1.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
2 \(3.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
3 \(2.6 \times {10^{ - 4}}\;m{\rm{/}}s\)
4 \(1.5 \times {10^{ - 4}}\;m{\rm{/}}s\)
PHXII03:CURRENT ELECTRICITY

357002 A conducting wire of cross-sectional area \(1\;c{m^2}\) has \(3 \times 10^{23}\) charge carriers per metre \({ }^{3}\). If the wire carries a current \(24\;\,mA,\) then drift velocity of carriers is

1 \(5 \times {10^{ - 2}}\;m{s^{ - 1}}\)
2 \(0.5\;m{s^{ - 1}}\)
3 \(5 \times {10^{ - 3}}\;m{s^{ - 1}}\)
4 \(5 \times {10^{ - 6}}\;m{s^{ - 1}}\)
PHXII03:CURRENT ELECTRICITY

357003 The belt of an electrostatic generator is 50 \(cm\) wide and travels at 30 \(cm\)/\(sec\). The belt carries charge into the sphere at a rate corresponding to \({10^{ - 4}}\) ampere. What is the current density of the belt?

1 \(6.7 \times {10^{ - 4}}C{m^{ - 2}}/s\)
2 \(6.7 \times {10^{ - 5}}C{m^{ - 2}}/s\)
3 \(6.7 \times {10^{ - 8}}C{m^{ - 2}}/s\)
4 \(6.7 \times {10^{ - 7}}C{m^{ - 2}}/s\)
PHXII03:CURRENT ELECTRICITY

357004 The mean free path of electrons in a metal is \(4 \times {10^{ - 8}}m.\) The electric field which can give on an average \(2eV\) energy to an electron in the metal will be in unit of \(V{m^{ - 1}}\)

1 \(5 \times {10^{ - 11}}\)
2 \(8 \times {10^{ - 11}}\)
3 \(5 \times {10^7}\)
4 \(8 \times {10^7}\)