357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))
357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).
357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))
357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).
357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))
357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).
357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))
357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).
357000 A current of 2 \(A\) is passing through a metal wire of cross sectional area \(2 \times {10^{ - 6}}{m^2}\). If the number density of free electrons in the wire is \(5 \times {10^{26}}\) \({m^{ - 3}}\) the drift speed of electrons is (given \(e = 1.6 \times {10^{ - 19}}C\))
357001 A current of \(10\,A\) is passing through a metallic wire of cross-sectional area \(4 \times {10^{ - 6}}\;{m^2}\). If the density of the aluminium conductor is \(2.7\;g{\rm{/}}cc\) considering aluminium gives 1 electron per atom for conduction, then find the drift velocity of the electrons if molecular weight of aluminium is \(27\;g\).