Explanation:
Denote \(R=\) Rydberg constant.
Shortest wavelength in Balmer series is for transition of \(e^{-}\)from \(n=\infty\) to \(n=2\).
\(\frac{1}{\lambda } = R{Z^2}\left[ {\frac{1}{{{2^2}}} - \frac{1}{{{\infty ^2}}}} \right]\)
\( \Rightarrow \frac{1}{\lambda } = \frac{R}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)
Shortest wavelength in Balmer series is for transition of \(e^{-}\)from \(n=\infty\) to \(n=4\).
\(\frac{1}{{{\lambda ^\prime }}} = R{(1)^2}\left[ {\frac{1}{{{4^2}}} - \frac{1}{{{\infty ^2}}}} \right] \Rightarrow \frac{1}{{{\lambda ^\prime }}} = \frac{R}{{16}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)
Divide eq. (1) by eq. (2)
\(\Rightarrow \dfrac{\lambda^{\prime}}{\lambda}=\dfrac{R}{4} \times \dfrac{16}{R} \Rightarrow \lambda^{\prime}=4 \lambda\)
Correct option is (1).