The Line Spectra of the Hydrogen Atom
PHXII12:ATOMS

356577 Find the ratio of minimum to maximum wavelength of radiation emitted by electron in ground state of Bohr's hydrogen atom.

1 \(\frac{1}{3}\)
2 \(\frac{3}{4}\)
3 \(\frac{4}{7}\)
4 \(\frac{5}{3}\)
PHXII12:ATOMS

356578 Match the following columns. Column-I (Spectral Lines of Hydrogen for transitions from) Column-II (Wavelengths \((nm)\))
Column I
Column II
A
\({n_2} = 3\) to \({n_1} = 2\)
P
410.2
B
\({n_2} = 4\) to \({n_1} = 2\)
Q
434.1
C
\({n_2} = 5\) to \({n_1} = 2\)
R
656.3
D
\({n_2} = 6\) to \({n_1} = 2\)
S
486.1

1 A-Q, B-P, C-S, D-R
2 A-R, B-S, C-Q, D-P
3 A-S, B-R, C-P, D-Q
4 A-P, B-Q, C-R, D-S
PHXII12:ATOMS

356579 A hydrogen atom in ground state is given an energy of \(10.2\,eV.\) How many spectral lines will be emitted due to transition of electrons?

1 3
2 6
3 10
4 1
PHXII12:ATOMS

356580 In hydrogen emission spectrum, for any series, the principal quantum number is \(n\). Corresponding maximum wavelength \(\lambda \) is (\(R = \) Rydberg’s constant)

1 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}\left( {n + 1} \right)}}\)
2 \(\frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{R\left( {2n + 1} \right)}}\)
3 \(\frac{{{n^2}\left( {n + 1} \right)}}{{R\left( {2n + 1} \right)}}\)
4 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII12:ATOMS

356577 Find the ratio of minimum to maximum wavelength of radiation emitted by electron in ground state of Bohr's hydrogen atom.

1 \(\frac{1}{3}\)
2 \(\frac{3}{4}\)
3 \(\frac{4}{7}\)
4 \(\frac{5}{3}\)
PHXII12:ATOMS

356578 Match the following columns. Column-I (Spectral Lines of Hydrogen for transitions from) Column-II (Wavelengths \((nm)\))
Column I
Column II
A
\({n_2} = 3\) to \({n_1} = 2\)
P
410.2
B
\({n_2} = 4\) to \({n_1} = 2\)
Q
434.1
C
\({n_2} = 5\) to \({n_1} = 2\)
R
656.3
D
\({n_2} = 6\) to \({n_1} = 2\)
S
486.1

1 A-Q, B-P, C-S, D-R
2 A-R, B-S, C-Q, D-P
3 A-S, B-R, C-P, D-Q
4 A-P, B-Q, C-R, D-S
PHXII12:ATOMS

356579 A hydrogen atom in ground state is given an energy of \(10.2\,eV.\) How many spectral lines will be emitted due to transition of electrons?

1 3
2 6
3 10
4 1
PHXII12:ATOMS

356580 In hydrogen emission spectrum, for any series, the principal quantum number is \(n\). Corresponding maximum wavelength \(\lambda \) is (\(R = \) Rydberg’s constant)

1 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}\left( {n + 1} \right)}}\)
2 \(\frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{R\left( {2n + 1} \right)}}\)
3 \(\frac{{{n^2}\left( {n + 1} \right)}}{{R\left( {2n + 1} \right)}}\)
4 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)
PHXII12:ATOMS

356577 Find the ratio of minimum to maximum wavelength of radiation emitted by electron in ground state of Bohr's hydrogen atom.

1 \(\frac{1}{3}\)
2 \(\frac{3}{4}\)
3 \(\frac{4}{7}\)
4 \(\frac{5}{3}\)
PHXII12:ATOMS

356578 Match the following columns. Column-I (Spectral Lines of Hydrogen for transitions from) Column-II (Wavelengths \((nm)\))
Column I
Column II
A
\({n_2} = 3\) to \({n_1} = 2\)
P
410.2
B
\({n_2} = 4\) to \({n_1} = 2\)
Q
434.1
C
\({n_2} = 5\) to \({n_1} = 2\)
R
656.3
D
\({n_2} = 6\) to \({n_1} = 2\)
S
486.1

1 A-Q, B-P, C-S, D-R
2 A-R, B-S, C-Q, D-P
3 A-S, B-R, C-P, D-Q
4 A-P, B-Q, C-R, D-S
PHXII12:ATOMS

356579 A hydrogen atom in ground state is given an energy of \(10.2\,eV.\) How many spectral lines will be emitted due to transition of electrons?

1 3
2 6
3 10
4 1
PHXII12:ATOMS

356580 In hydrogen emission spectrum, for any series, the principal quantum number is \(n\). Corresponding maximum wavelength \(\lambda \) is (\(R = \) Rydberg’s constant)

1 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}\left( {n + 1} \right)}}\)
2 \(\frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{R\left( {2n + 1} \right)}}\)
3 \(\frac{{{n^2}\left( {n + 1} \right)}}{{R\left( {2n + 1} \right)}}\)
4 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)
PHXII12:ATOMS

356577 Find the ratio of minimum to maximum wavelength of radiation emitted by electron in ground state of Bohr's hydrogen atom.

1 \(\frac{1}{3}\)
2 \(\frac{3}{4}\)
3 \(\frac{4}{7}\)
4 \(\frac{5}{3}\)
PHXII12:ATOMS

356578 Match the following columns. Column-I (Spectral Lines of Hydrogen for transitions from) Column-II (Wavelengths \((nm)\))
Column I
Column II
A
\({n_2} = 3\) to \({n_1} = 2\)
P
410.2
B
\({n_2} = 4\) to \({n_1} = 2\)
Q
434.1
C
\({n_2} = 5\) to \({n_1} = 2\)
R
656.3
D
\({n_2} = 6\) to \({n_1} = 2\)
S
486.1

1 A-Q, B-P, C-S, D-R
2 A-R, B-S, C-Q, D-P
3 A-S, B-R, C-P, D-Q
4 A-P, B-Q, C-R, D-S
PHXII12:ATOMS

356579 A hydrogen atom in ground state is given an energy of \(10.2\,eV.\) How many spectral lines will be emitted due to transition of electrons?

1 3
2 6
3 10
4 1
PHXII12:ATOMS

356580 In hydrogen emission spectrum, for any series, the principal quantum number is \(n\). Corresponding maximum wavelength \(\lambda \) is (\(R = \) Rydberg’s constant)

1 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}\left( {n + 1} \right)}}\)
2 \(\frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{R\left( {2n + 1} \right)}}\)
3 \(\frac{{{n^2}\left( {n + 1} \right)}}{{R\left( {2n + 1} \right)}}\)
4 \(\frac{{R\left( {2n + 1} \right)}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here