356469
The de-Broglie wavelength of an electron in the first Bohr orbit is
1 Equal to the circumference of the first orbit.
2 \(1 / 2\) th circumference of the first orbit.
3 \(1 / 4\) th circumference of the first orbit.
4 \(3 / 4\) th circumference of the first orbit.
Explanation:
\(m v r=\dfrac{n h}{2 \pi} ; \lambda=\dfrac{h}{m v} \Rightarrow n \lambda=2 \pi r\) \(\Rightarrow \lambda=\dfrac{2 \pi r}{n} \Rightarrow\) for \(n=1, \lambda=2 \pi r\)
PHXII12:ATOMS
356470
The period of revolution of an elctron revolving in \({n^{th}}\) orbit of \(H\) - atoms is proportional to
1 \({n^3}\)
2 independent of \(n\)
3 \({n^2}\)
4 \(1/n\)
Explanation:
Frequency of electron in \({n^{th}}\) orbit \(f = \frac{{4{\pi ^2}{Z^2}{e^4}m{K^2}}}{{{n^3}{h^3}}} \Rightarrow f \propto \frac{1}{{{n^3}}}\) \(\therefore \;\;{\rm{Time}}\;{\rm{period}}\;T = \frac{1}{f}\;i.e.,\,T \propto {n^3}\)
KCET - 2020
PHXII12:ATOMS
356471
Bohr’s atomic model assumes
1 The nucleus is inside the atom at rest
2 Electron in a quantised orbit will not radiate energy
356469
The de-Broglie wavelength of an electron in the first Bohr orbit is
1 Equal to the circumference of the first orbit.
2 \(1 / 2\) th circumference of the first orbit.
3 \(1 / 4\) th circumference of the first orbit.
4 \(3 / 4\) th circumference of the first orbit.
Explanation:
\(m v r=\dfrac{n h}{2 \pi} ; \lambda=\dfrac{h}{m v} \Rightarrow n \lambda=2 \pi r\) \(\Rightarrow \lambda=\dfrac{2 \pi r}{n} \Rightarrow\) for \(n=1, \lambda=2 \pi r\)
PHXII12:ATOMS
356470
The period of revolution of an elctron revolving in \({n^{th}}\) orbit of \(H\) - atoms is proportional to
1 \({n^3}\)
2 independent of \(n\)
3 \({n^2}\)
4 \(1/n\)
Explanation:
Frequency of electron in \({n^{th}}\) orbit \(f = \frac{{4{\pi ^2}{Z^2}{e^4}m{K^2}}}{{{n^3}{h^3}}} \Rightarrow f \propto \frac{1}{{{n^3}}}\) \(\therefore \;\;{\rm{Time}}\;{\rm{period}}\;T = \frac{1}{f}\;i.e.,\,T \propto {n^3}\)
KCET - 2020
PHXII12:ATOMS
356471
Bohr’s atomic model assumes
1 The nucleus is inside the atom at rest
2 Electron in a quantised orbit will not radiate energy
356469
The de-Broglie wavelength of an electron in the first Bohr orbit is
1 Equal to the circumference of the first orbit.
2 \(1 / 2\) th circumference of the first orbit.
3 \(1 / 4\) th circumference of the first orbit.
4 \(3 / 4\) th circumference of the first orbit.
Explanation:
\(m v r=\dfrac{n h}{2 \pi} ; \lambda=\dfrac{h}{m v} \Rightarrow n \lambda=2 \pi r\) \(\Rightarrow \lambda=\dfrac{2 \pi r}{n} \Rightarrow\) for \(n=1, \lambda=2 \pi r\)
PHXII12:ATOMS
356470
The period of revolution of an elctron revolving in \({n^{th}}\) orbit of \(H\) - atoms is proportional to
1 \({n^3}\)
2 independent of \(n\)
3 \({n^2}\)
4 \(1/n\)
Explanation:
Frequency of electron in \({n^{th}}\) orbit \(f = \frac{{4{\pi ^2}{Z^2}{e^4}m{K^2}}}{{{n^3}{h^3}}} \Rightarrow f \propto \frac{1}{{{n^3}}}\) \(\therefore \;\;{\rm{Time}}\;{\rm{period}}\;T = \frac{1}{f}\;i.e.,\,T \propto {n^3}\)
KCET - 2020
PHXII12:ATOMS
356471
Bohr’s atomic model assumes
1 The nucleus is inside the atom at rest
2 Electron in a quantised orbit will not radiate energy
356469
The de-Broglie wavelength of an electron in the first Bohr orbit is
1 Equal to the circumference of the first orbit.
2 \(1 / 2\) th circumference of the first orbit.
3 \(1 / 4\) th circumference of the first orbit.
4 \(3 / 4\) th circumference of the first orbit.
Explanation:
\(m v r=\dfrac{n h}{2 \pi} ; \lambda=\dfrac{h}{m v} \Rightarrow n \lambda=2 \pi r\) \(\Rightarrow \lambda=\dfrac{2 \pi r}{n} \Rightarrow\) for \(n=1, \lambda=2 \pi r\)
PHXII12:ATOMS
356470
The period of revolution of an elctron revolving in \({n^{th}}\) orbit of \(H\) - atoms is proportional to
1 \({n^3}\)
2 independent of \(n\)
3 \({n^2}\)
4 \(1/n\)
Explanation:
Frequency of electron in \({n^{th}}\) orbit \(f = \frac{{4{\pi ^2}{Z^2}{e^4}m{K^2}}}{{{n^3}{h^3}}} \Rightarrow f \propto \frac{1}{{{n^3}}}\) \(\therefore \;\;{\rm{Time}}\;{\rm{period}}\;T = \frac{1}{f}\;i.e.,\,T \propto {n^3}\)
KCET - 2020
PHXII12:ATOMS
356471
Bohr’s atomic model assumes
1 The nucleus is inside the atom at rest
2 Electron in a quantised orbit will not radiate energy