Bohr Model of the Hydrogen Atom
PHXII12:ATOMS

356412 The magnetic moment \(\left( {{m_{orb{\rm{ }}}}} \right)\) of a revolving electron around the nucleus varies with the principal quantum number \((n)\) as

1 \(m_{\text {orb }} \propto n^{2}\)
2 \(m_{\text {orb }} \propto \dfrac{1}{n^{2}}\)
3 \(m_{\text {orb }} \propto \dfrac{1}{n}\)
4 \(m_{\text {orb }} \propto n\)
PHXII12:ATOMS

356413 The total energy of electron in the ground state of hydrogen atom is \( - 13.6\,eV\). The kinetic energy of an electron in the first excited state is

1 \(6.8\,eV\)
2 \(3.4\,eV\)
3 \(1.7\,eV\)
4 \(13.6\,eV\)
PHXII12:ATOMS

356414 Angular momentum \((L)\) and radius \((r)\) of a hydrogen atom are related as:

1 \(Lr = {\rm{constant}}\)
2 \(L{r^2} = {\rm{constant}}\)
3 \(L{r^4} = {\rm{constant}}\)
4 \({\rm{None}}\,\,{\rm{of}}\,\,{\rm{these}}\)
PHXII12:ATOMS

356415 The ratio of speed of an electron in the ground state in Bohr’s first orbit of hydrogen atom to velocity of light (\(c\)) is (\(h = \) Planck’s constant, \({\varepsilon _0} = \) permitivity of free space, \(e = \)charge on electron)

1 \(\frac{{2{e^2}{\varepsilon _0}}}{{hc}}\)
2 \(\frac{{{e^3}}}{{2{\varepsilon _0}hc}}\)
3 \(\frac{{{e^2}}}{{2{\varepsilon _0}hc}}\)
4 \(\frac{{2{\varepsilon _0}hc}}{{{e^2}}}\)
PHXII12:ATOMS

356416 Potential energy \((P{E_n})\) and kinetic energy \((K{E_n})\) of electron in \({n^{th}}\) orbit are related as:

1 \(P{E_n} = K{E_n}\)
2 \(P{E_n} = - 2K{E_n}\)
3 \(P{E_n} = 2K{E_n}\)
4 \(P{E_n} = - K{E_n}\)
PHXII12:ATOMS

356412 The magnetic moment \(\left( {{m_{orb{\rm{ }}}}} \right)\) of a revolving electron around the nucleus varies with the principal quantum number \((n)\) as

1 \(m_{\text {orb }} \propto n^{2}\)
2 \(m_{\text {orb }} \propto \dfrac{1}{n^{2}}\)
3 \(m_{\text {orb }} \propto \dfrac{1}{n}\)
4 \(m_{\text {orb }} \propto n\)
PHXII12:ATOMS

356413 The total energy of electron in the ground state of hydrogen atom is \( - 13.6\,eV\). The kinetic energy of an electron in the first excited state is

1 \(6.8\,eV\)
2 \(3.4\,eV\)
3 \(1.7\,eV\)
4 \(13.6\,eV\)
PHXII12:ATOMS

356414 Angular momentum \((L)\) and radius \((r)\) of a hydrogen atom are related as:

1 \(Lr = {\rm{constant}}\)
2 \(L{r^2} = {\rm{constant}}\)
3 \(L{r^4} = {\rm{constant}}\)
4 \({\rm{None}}\,\,{\rm{of}}\,\,{\rm{these}}\)
PHXII12:ATOMS

356415 The ratio of speed of an electron in the ground state in Bohr’s first orbit of hydrogen atom to velocity of light (\(c\)) is (\(h = \) Planck’s constant, \({\varepsilon _0} = \) permitivity of free space, \(e = \)charge on electron)

1 \(\frac{{2{e^2}{\varepsilon _0}}}{{hc}}\)
2 \(\frac{{{e^3}}}{{2{\varepsilon _0}hc}}\)
3 \(\frac{{{e^2}}}{{2{\varepsilon _0}hc}}\)
4 \(\frac{{2{\varepsilon _0}hc}}{{{e^2}}}\)
PHXII12:ATOMS

356416 Potential energy \((P{E_n})\) and kinetic energy \((K{E_n})\) of electron in \({n^{th}}\) orbit are related as:

1 \(P{E_n} = K{E_n}\)
2 \(P{E_n} = - 2K{E_n}\)
3 \(P{E_n} = 2K{E_n}\)
4 \(P{E_n} = - K{E_n}\)
PHXII12:ATOMS

356412 The magnetic moment \(\left( {{m_{orb{\rm{ }}}}} \right)\) of a revolving electron around the nucleus varies with the principal quantum number \((n)\) as

1 \(m_{\text {orb }} \propto n^{2}\)
2 \(m_{\text {orb }} \propto \dfrac{1}{n^{2}}\)
3 \(m_{\text {orb }} \propto \dfrac{1}{n}\)
4 \(m_{\text {orb }} \propto n\)
PHXII12:ATOMS

356413 The total energy of electron in the ground state of hydrogen atom is \( - 13.6\,eV\). The kinetic energy of an electron in the first excited state is

1 \(6.8\,eV\)
2 \(3.4\,eV\)
3 \(1.7\,eV\)
4 \(13.6\,eV\)
PHXII12:ATOMS

356414 Angular momentum \((L)\) and radius \((r)\) of a hydrogen atom are related as:

1 \(Lr = {\rm{constant}}\)
2 \(L{r^2} = {\rm{constant}}\)
3 \(L{r^4} = {\rm{constant}}\)
4 \({\rm{None}}\,\,{\rm{of}}\,\,{\rm{these}}\)
PHXII12:ATOMS

356415 The ratio of speed of an electron in the ground state in Bohr’s first orbit of hydrogen atom to velocity of light (\(c\)) is (\(h = \) Planck’s constant, \({\varepsilon _0} = \) permitivity of free space, \(e = \)charge on electron)

1 \(\frac{{2{e^2}{\varepsilon _0}}}{{hc}}\)
2 \(\frac{{{e^3}}}{{2{\varepsilon _0}hc}}\)
3 \(\frac{{{e^2}}}{{2{\varepsilon _0}hc}}\)
4 \(\frac{{2{\varepsilon _0}hc}}{{{e^2}}}\)
PHXII12:ATOMS

356416 Potential energy \((P{E_n})\) and kinetic energy \((K{E_n})\) of electron in \({n^{th}}\) orbit are related as:

1 \(P{E_n} = K{E_n}\)
2 \(P{E_n} = - 2K{E_n}\)
3 \(P{E_n} = 2K{E_n}\)
4 \(P{E_n} = - K{E_n}\)
PHXII12:ATOMS

356412 The magnetic moment \(\left( {{m_{orb{\rm{ }}}}} \right)\) of a revolving electron around the nucleus varies with the principal quantum number \((n)\) as

1 \(m_{\text {orb }} \propto n^{2}\)
2 \(m_{\text {orb }} \propto \dfrac{1}{n^{2}}\)
3 \(m_{\text {orb }} \propto \dfrac{1}{n}\)
4 \(m_{\text {orb }} \propto n\)
PHXII12:ATOMS

356413 The total energy of electron in the ground state of hydrogen atom is \( - 13.6\,eV\). The kinetic energy of an electron in the first excited state is

1 \(6.8\,eV\)
2 \(3.4\,eV\)
3 \(1.7\,eV\)
4 \(13.6\,eV\)
PHXII12:ATOMS

356414 Angular momentum \((L)\) and radius \((r)\) of a hydrogen atom are related as:

1 \(Lr = {\rm{constant}}\)
2 \(L{r^2} = {\rm{constant}}\)
3 \(L{r^4} = {\rm{constant}}\)
4 \({\rm{None}}\,\,{\rm{of}}\,\,{\rm{these}}\)
PHXII12:ATOMS

356415 The ratio of speed of an electron in the ground state in Bohr’s first orbit of hydrogen atom to velocity of light (\(c\)) is (\(h = \) Planck’s constant, \({\varepsilon _0} = \) permitivity of free space, \(e = \)charge on electron)

1 \(\frac{{2{e^2}{\varepsilon _0}}}{{hc}}\)
2 \(\frac{{{e^3}}}{{2{\varepsilon _0}hc}}\)
3 \(\frac{{{e^2}}}{{2{\varepsilon _0}hc}}\)
4 \(\frac{{2{\varepsilon _0}hc}}{{{e^2}}}\)
PHXII12:ATOMS

356416 Potential energy \((P{E_n})\) and kinetic energy \((K{E_n})\) of electron in \({n^{th}}\) orbit are related as:

1 \(P{E_n} = K{E_n}\)
2 \(P{E_n} = - 2K{E_n}\)
3 \(P{E_n} = 2K{E_n}\)
4 \(P{E_n} = - K{E_n}\)
PHXII12:ATOMS

356412 The magnetic moment \(\left( {{m_{orb{\rm{ }}}}} \right)\) of a revolving electron around the nucleus varies with the principal quantum number \((n)\) as

1 \(m_{\text {orb }} \propto n^{2}\)
2 \(m_{\text {orb }} \propto \dfrac{1}{n^{2}}\)
3 \(m_{\text {orb }} \propto \dfrac{1}{n}\)
4 \(m_{\text {orb }} \propto n\)
PHXII12:ATOMS

356413 The total energy of electron in the ground state of hydrogen atom is \( - 13.6\,eV\). The kinetic energy of an electron in the first excited state is

1 \(6.8\,eV\)
2 \(3.4\,eV\)
3 \(1.7\,eV\)
4 \(13.6\,eV\)
PHXII12:ATOMS

356414 Angular momentum \((L)\) and radius \((r)\) of a hydrogen atom are related as:

1 \(Lr = {\rm{constant}}\)
2 \(L{r^2} = {\rm{constant}}\)
3 \(L{r^4} = {\rm{constant}}\)
4 \({\rm{None}}\,\,{\rm{of}}\,\,{\rm{these}}\)
PHXII12:ATOMS

356415 The ratio of speed of an electron in the ground state in Bohr’s first orbit of hydrogen atom to velocity of light (\(c\)) is (\(h = \) Planck’s constant, \({\varepsilon _0} = \) permitivity of free space, \(e = \)charge on electron)

1 \(\frac{{2{e^2}{\varepsilon _0}}}{{hc}}\)
2 \(\frac{{{e^3}}}{{2{\varepsilon _0}hc}}\)
3 \(\frac{{{e^2}}}{{2{\varepsilon _0}hc}}\)
4 \(\frac{{2{\varepsilon _0}hc}}{{{e^2}}}\)
PHXII12:ATOMS

356416 Potential energy \((P{E_n})\) and kinetic energy \((K{E_n})\) of electron in \({n^{th}}\) orbit are related as:

1 \(P{E_n} = K{E_n}\)
2 \(P{E_n} = - 2K{E_n}\)
3 \(P{E_n} = 2K{E_n}\)
4 \(P{E_n} = - K{E_n}\)