356088
If \(E = 100\sin (100t)\) volt and \(I = 100\sin \left( {100t + \frac{\pi }{3}} \right)mA\) are the instantaneous values of voltage and current, then the \(r\).\(m\).\(s\). values of voltage and current are respectively.
1 \(141.4\,V,141.4\,A\)
2 \(141.4\,V,141.4\,mA\)
3 \(70.7\,V,70.7A\)
4 \(70.7\,V,70.7mA\)
Explanation:
The rms value of voltage is \({E_{rms}} = \frac{{{E_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}V = 70.7V\) The rms value of current is \({I_{rms}} = \frac{{{I_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}mA = 70.7mA\)
356088
If \(E = 100\sin (100t)\) volt and \(I = 100\sin \left( {100t + \frac{\pi }{3}} \right)mA\) are the instantaneous values of voltage and current, then the \(r\).\(m\).\(s\). values of voltage and current are respectively.
1 \(141.4\,V,141.4\,A\)
2 \(141.4\,V,141.4\,mA\)
3 \(70.7\,V,70.7A\)
4 \(70.7\,V,70.7mA\)
Explanation:
The rms value of voltage is \({E_{rms}} = \frac{{{E_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}V = 70.7V\) The rms value of current is \({I_{rms}} = \frac{{{I_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}mA = 70.7mA\)
356088
If \(E = 100\sin (100t)\) volt and \(I = 100\sin \left( {100t + \frac{\pi }{3}} \right)mA\) are the instantaneous values of voltage and current, then the \(r\).\(m\).\(s\). values of voltage and current are respectively.
1 \(141.4\,V,141.4\,A\)
2 \(141.4\,V,141.4\,mA\)
3 \(70.7\,V,70.7A\)
4 \(70.7\,V,70.7mA\)
Explanation:
The rms value of voltage is \({E_{rms}} = \frac{{{E_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}V = 70.7V\) The rms value of current is \({I_{rms}} = \frac{{{I_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}mA = 70.7mA\)
356088
If \(E = 100\sin (100t)\) volt and \(I = 100\sin \left( {100t + \frac{\pi }{3}} \right)mA\) are the instantaneous values of voltage and current, then the \(r\).\(m\).\(s\). values of voltage and current are respectively.
1 \(141.4\,V,141.4\,A\)
2 \(141.4\,V,141.4\,mA\)
3 \(70.7\,V,70.7A\)
4 \(70.7\,V,70.7mA\)
Explanation:
The rms value of voltage is \({E_{rms}} = \frac{{{E_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}V = 70.7V\) The rms value of current is \({I_{rms}} = \frac{{{I_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}mA = 70.7mA\)
356088
If \(E = 100\sin (100t)\) volt and \(I = 100\sin \left( {100t + \frac{\pi }{3}} \right)mA\) are the instantaneous values of voltage and current, then the \(r\).\(m\).\(s\). values of voltage and current are respectively.
1 \(141.4\,V,141.4\,A\)
2 \(141.4\,V,141.4\,mA\)
3 \(70.7\,V,70.7A\)
4 \(70.7\,V,70.7mA\)
Explanation:
The rms value of voltage is \({E_{rms}} = \frac{{{E_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}V = 70.7V\) The rms value of current is \({I_{rms}} = \frac{{{I_o}}}{{\sqrt 2 }} = \frac{{100}}{{\sqrt 2 }}mA = 70.7mA\)