Basic Quantities in AC
PHXII07:ALTERNATING CURRENT

356071 If \({i_1} = 3\sin \omega t\) and \({i_2} = 4\cos \omega t,\) then \({i_3}\) is
supporting img

1 \(5\sin (\omega t + 53^\circ )\)
2 \(5\sin (\omega t + 45^\circ )\)
3 \( - 5\sin (\omega t + 53^\circ )\)
4 \(5\sin (\omega t + 37^\circ )\)
PHXII07:ALTERNATING CURRENT

356072 Find the intial phase angle for \(V = 2\sin \omega t + 3\cos \omega t\) is

1 \({\tan ^{ - 1}}\left( {\frac{3}{2}} \right)\)
2 \({\tan ^{ - 1}}\left( {\frac{4}{5}} \right)\)
3 \({\tan ^{ - 1}}\left( {\frac{1}{2}} \right)\)
4 \({\tan ^{ - 1}}\left( {\frac{3}{4}} \right)\)
PHXII07:ALTERNATING CURRENT

356073 If a direct current of value a ampere is superimposed on an alternative current \(I=b \sin \omega t\) flowing through a wire, what is the effective value of the resulting current in the circuit?
supporting img

1 \(\left[a^{2}-\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
2 \(\left[a^{2}+b^{2}\right]^{1 / 2}\)
3 \(\left[\dfrac{a^{2}}{2}+b^{2}\right]^{1 / 2}\)
4 \(\left[a^{2}+\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
PHXII07:ALTERNATING CURRENT

356074 The instantaneous current in an \({A C}\) circuit is \({i=5 \sqrt{2} \sin \left(100 t+\dfrac{\pi}{3}\right)}\). The rms value of current is

1 \(5\sqrt 2 \,A\)
2 \(5\,A\)
3 \(\sqrt 2 \,A\)
4 \(3.185\,A\)
PHXII07:ALTERNATING CURRENT

356075 A direct current of \(2\;A\) is superimposed on an alternating current \(I=5 \sin \omega t\) flowing through a wire. The rms value of the resulting current will be

1 4.5
2 13.5
3 16.5
4 12.5
PHXII07:ALTERNATING CURRENT

356071 If \({i_1} = 3\sin \omega t\) and \({i_2} = 4\cos \omega t,\) then \({i_3}\) is
supporting img

1 \(5\sin (\omega t + 53^\circ )\)
2 \(5\sin (\omega t + 45^\circ )\)
3 \( - 5\sin (\omega t + 53^\circ )\)
4 \(5\sin (\omega t + 37^\circ )\)
PHXII07:ALTERNATING CURRENT

356072 Find the intial phase angle for \(V = 2\sin \omega t + 3\cos \omega t\) is

1 \({\tan ^{ - 1}}\left( {\frac{3}{2}} \right)\)
2 \({\tan ^{ - 1}}\left( {\frac{4}{5}} \right)\)
3 \({\tan ^{ - 1}}\left( {\frac{1}{2}} \right)\)
4 \({\tan ^{ - 1}}\left( {\frac{3}{4}} \right)\)
PHXII07:ALTERNATING CURRENT

356073 If a direct current of value a ampere is superimposed on an alternative current \(I=b \sin \omega t\) flowing through a wire, what is the effective value of the resulting current in the circuit?
supporting img

1 \(\left[a^{2}-\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
2 \(\left[a^{2}+b^{2}\right]^{1 / 2}\)
3 \(\left[\dfrac{a^{2}}{2}+b^{2}\right]^{1 / 2}\)
4 \(\left[a^{2}+\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
PHXII07:ALTERNATING CURRENT

356074 The instantaneous current in an \({A C}\) circuit is \({i=5 \sqrt{2} \sin \left(100 t+\dfrac{\pi}{3}\right)}\). The rms value of current is

1 \(5\sqrt 2 \,A\)
2 \(5\,A\)
3 \(\sqrt 2 \,A\)
4 \(3.185\,A\)
PHXII07:ALTERNATING CURRENT

356075 A direct current of \(2\;A\) is superimposed on an alternating current \(I=5 \sin \omega t\) flowing through a wire. The rms value of the resulting current will be

1 4.5
2 13.5
3 16.5
4 12.5
PHXII07:ALTERNATING CURRENT

356071 If \({i_1} = 3\sin \omega t\) and \({i_2} = 4\cos \omega t,\) then \({i_3}\) is
supporting img

1 \(5\sin (\omega t + 53^\circ )\)
2 \(5\sin (\omega t + 45^\circ )\)
3 \( - 5\sin (\omega t + 53^\circ )\)
4 \(5\sin (\omega t + 37^\circ )\)
PHXII07:ALTERNATING CURRENT

356072 Find the intial phase angle for \(V = 2\sin \omega t + 3\cos \omega t\) is

1 \({\tan ^{ - 1}}\left( {\frac{3}{2}} \right)\)
2 \({\tan ^{ - 1}}\left( {\frac{4}{5}} \right)\)
3 \({\tan ^{ - 1}}\left( {\frac{1}{2}} \right)\)
4 \({\tan ^{ - 1}}\left( {\frac{3}{4}} \right)\)
PHXII07:ALTERNATING CURRENT

356073 If a direct current of value a ampere is superimposed on an alternative current \(I=b \sin \omega t\) flowing through a wire, what is the effective value of the resulting current in the circuit?
supporting img

1 \(\left[a^{2}-\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
2 \(\left[a^{2}+b^{2}\right]^{1 / 2}\)
3 \(\left[\dfrac{a^{2}}{2}+b^{2}\right]^{1 / 2}\)
4 \(\left[a^{2}+\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
PHXII07:ALTERNATING CURRENT

356074 The instantaneous current in an \({A C}\) circuit is \({i=5 \sqrt{2} \sin \left(100 t+\dfrac{\pi}{3}\right)}\). The rms value of current is

1 \(5\sqrt 2 \,A\)
2 \(5\,A\)
3 \(\sqrt 2 \,A\)
4 \(3.185\,A\)
PHXII07:ALTERNATING CURRENT

356075 A direct current of \(2\;A\) is superimposed on an alternating current \(I=5 \sin \omega t\) flowing through a wire. The rms value of the resulting current will be

1 4.5
2 13.5
3 16.5
4 12.5
PHXII07:ALTERNATING CURRENT

356071 If \({i_1} = 3\sin \omega t\) and \({i_2} = 4\cos \omega t,\) then \({i_3}\) is
supporting img

1 \(5\sin (\omega t + 53^\circ )\)
2 \(5\sin (\omega t + 45^\circ )\)
3 \( - 5\sin (\omega t + 53^\circ )\)
4 \(5\sin (\omega t + 37^\circ )\)
PHXII07:ALTERNATING CURRENT

356072 Find the intial phase angle for \(V = 2\sin \omega t + 3\cos \omega t\) is

1 \({\tan ^{ - 1}}\left( {\frac{3}{2}} \right)\)
2 \({\tan ^{ - 1}}\left( {\frac{4}{5}} \right)\)
3 \({\tan ^{ - 1}}\left( {\frac{1}{2}} \right)\)
4 \({\tan ^{ - 1}}\left( {\frac{3}{4}} \right)\)
PHXII07:ALTERNATING CURRENT

356073 If a direct current of value a ampere is superimposed on an alternative current \(I=b \sin \omega t\) flowing through a wire, what is the effective value of the resulting current in the circuit?
supporting img

1 \(\left[a^{2}-\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
2 \(\left[a^{2}+b^{2}\right]^{1 / 2}\)
3 \(\left[\dfrac{a^{2}}{2}+b^{2}\right]^{1 / 2}\)
4 \(\left[a^{2}+\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
PHXII07:ALTERNATING CURRENT

356074 The instantaneous current in an \({A C}\) circuit is \({i=5 \sqrt{2} \sin \left(100 t+\dfrac{\pi}{3}\right)}\). The rms value of current is

1 \(5\sqrt 2 \,A\)
2 \(5\,A\)
3 \(\sqrt 2 \,A\)
4 \(3.185\,A\)
PHXII07:ALTERNATING CURRENT

356075 A direct current of \(2\;A\) is superimposed on an alternating current \(I=5 \sin \omega t\) flowing through a wire. The rms value of the resulting current will be

1 4.5
2 13.5
3 16.5
4 12.5
PHXII07:ALTERNATING CURRENT

356071 If \({i_1} = 3\sin \omega t\) and \({i_2} = 4\cos \omega t,\) then \({i_3}\) is
supporting img

1 \(5\sin (\omega t + 53^\circ )\)
2 \(5\sin (\omega t + 45^\circ )\)
3 \( - 5\sin (\omega t + 53^\circ )\)
4 \(5\sin (\omega t + 37^\circ )\)
PHXII07:ALTERNATING CURRENT

356072 Find the intial phase angle for \(V = 2\sin \omega t + 3\cos \omega t\) is

1 \({\tan ^{ - 1}}\left( {\frac{3}{2}} \right)\)
2 \({\tan ^{ - 1}}\left( {\frac{4}{5}} \right)\)
3 \({\tan ^{ - 1}}\left( {\frac{1}{2}} \right)\)
4 \({\tan ^{ - 1}}\left( {\frac{3}{4}} \right)\)
PHXII07:ALTERNATING CURRENT

356073 If a direct current of value a ampere is superimposed on an alternative current \(I=b \sin \omega t\) flowing through a wire, what is the effective value of the resulting current in the circuit?
supporting img

1 \(\left[a^{2}-\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
2 \(\left[a^{2}+b^{2}\right]^{1 / 2}\)
3 \(\left[\dfrac{a^{2}}{2}+b^{2}\right]^{1 / 2}\)
4 \(\left[a^{2}+\dfrac{1}{2} b^{2}\right]^{1 / 2}\)
PHXII07:ALTERNATING CURRENT

356074 The instantaneous current in an \({A C}\) circuit is \({i=5 \sqrt{2} \sin \left(100 t+\dfrac{\pi}{3}\right)}\). The rms value of current is

1 \(5\sqrt 2 \,A\)
2 \(5\,A\)
3 \(\sqrt 2 \,A\)
4 \(3.185\,A\)
PHXII07:ALTERNATING CURRENT

356075 A direct current of \(2\;A\) is superimposed on an alternating current \(I=5 \sin \omega t\) flowing through a wire. The rms value of the resulting current will be

1 4.5
2 13.5
3 16.5
4 12.5