297806
Difference of the numbers 32 and 27.091 is:
1 30.791
2 5.909
3 4.909
4 3.909
Explanation:
4.909 32 - 27.091 = 4.909
RATIONAL NUMBERS
297807
Product of 3.92 × 0.1 × 0.0 × 6.3 is:
1 0.392
2 0.1176
3 0
4 6.3
Explanation:
0 When a number is multiplied by zero, it gives always zero. Then 3.92 × 0.1 × 0.0 × 6.3 = 0
RATIONAL NUMBERS
297808
If \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers, then x =?
1 3
2 6
3 9
4 12
Explanation:
9 It is given that the rational numbers \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers. We know that the values of two equivalent rational numbers is equal. \(\therefore\frac{\text{x}}{-24}=-\frac{3}{8}\) \(\Rightarrow\text{x}\times8=-3\times(-24)\) \(\Big(\frac{\text{a}}{\text{b}}=\frac{\text{c}}{\text{d}}\Rightarrow\text{ad}=\text{bc}\Big)\) \(\Rightarrow8\text{x}=72\) \(\Rightarrow\frac{8\text{x}}{8}=\frac{72}{8}\) (Dividing both sides by 8) \(\Rightarrow\text{x}=9 \) Hence, the correct answer is option (c).
RATIONAL NUMBERS
297809
Which of the following is correct?
1 \(\frac{5}{9}>\frac{-3}{8}\)
2 \(\frac{5}{9}<\frac{-3}{-8}\)
3 \(\frac{2}{-3}<\frac{-8}{7}\)
4 \(\frac{4}{-3}>\frac{-8}{7}\)
Explanation:
\(\frac{5}{9}>\frac{-3}{8}\) Consider the rational numbers \(\frac{5}{9}\text{ and } \frac{-3}{-8}\) We write the rational number \(\frac{-3}{-8}\) with positive denominator. \(\frac{-3}{-8}=\frac{-3\times(-1)}{-8\times(-1)}=\frac{3}{8}\) Now, we write the rational numbers so that they have a common denominator. LCM of 8 and 9 = 72 So, \(\frac{5}{9}=\frac{5\times8}{9\times8}=\frac{40}{72}\) and \(\frac{3}{8}=\frac{3\times9}{8\times9}=\frac{27}{72}\) Now, \(40>27\) \(\Rightarrow\frac{40}{72}>\frac{27}{72}\) \(\Rightarrow\frac{5}{9}>\frac{3}{8}\) \(\Rightarrow\frac{5}{9}>\frac{-3}{-8}\) Hence the correct option is (a).
297806
Difference of the numbers 32 and 27.091 is:
1 30.791
2 5.909
3 4.909
4 3.909
Explanation:
4.909 32 - 27.091 = 4.909
RATIONAL NUMBERS
297807
Product of 3.92 × 0.1 × 0.0 × 6.3 is:
1 0.392
2 0.1176
3 0
4 6.3
Explanation:
0 When a number is multiplied by zero, it gives always zero. Then 3.92 × 0.1 × 0.0 × 6.3 = 0
RATIONAL NUMBERS
297808
If \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers, then x =?
1 3
2 6
3 9
4 12
Explanation:
9 It is given that the rational numbers \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers. We know that the values of two equivalent rational numbers is equal. \(\therefore\frac{\text{x}}{-24}=-\frac{3}{8}\) \(\Rightarrow\text{x}\times8=-3\times(-24)\) \(\Big(\frac{\text{a}}{\text{b}}=\frac{\text{c}}{\text{d}}\Rightarrow\text{ad}=\text{bc}\Big)\) \(\Rightarrow8\text{x}=72\) \(\Rightarrow\frac{8\text{x}}{8}=\frac{72}{8}\) (Dividing both sides by 8) \(\Rightarrow\text{x}=9 \) Hence, the correct answer is option (c).
RATIONAL NUMBERS
297809
Which of the following is correct?
1 \(\frac{5}{9}>\frac{-3}{8}\)
2 \(\frac{5}{9}<\frac{-3}{-8}\)
3 \(\frac{2}{-3}<\frac{-8}{7}\)
4 \(\frac{4}{-3}>\frac{-8}{7}\)
Explanation:
\(\frac{5}{9}>\frac{-3}{8}\) Consider the rational numbers \(\frac{5}{9}\text{ and } \frac{-3}{-8}\) We write the rational number \(\frac{-3}{-8}\) with positive denominator. \(\frac{-3}{-8}=\frac{-3\times(-1)}{-8\times(-1)}=\frac{3}{8}\) Now, we write the rational numbers so that they have a common denominator. LCM of 8 and 9 = 72 So, \(\frac{5}{9}=\frac{5\times8}{9\times8}=\frac{40}{72}\) and \(\frac{3}{8}=\frac{3\times9}{8\times9}=\frac{27}{72}\) Now, \(40>27\) \(\Rightarrow\frac{40}{72}>\frac{27}{72}\) \(\Rightarrow\frac{5}{9}>\frac{3}{8}\) \(\Rightarrow\frac{5}{9}>\frac{-3}{-8}\) Hence the correct option is (a).
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
RATIONAL NUMBERS
297806
Difference of the numbers 32 and 27.091 is:
1 30.791
2 5.909
3 4.909
4 3.909
Explanation:
4.909 32 - 27.091 = 4.909
RATIONAL NUMBERS
297807
Product of 3.92 × 0.1 × 0.0 × 6.3 is:
1 0.392
2 0.1176
3 0
4 6.3
Explanation:
0 When a number is multiplied by zero, it gives always zero. Then 3.92 × 0.1 × 0.0 × 6.3 = 0
RATIONAL NUMBERS
297808
If \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers, then x =?
1 3
2 6
3 9
4 12
Explanation:
9 It is given that the rational numbers \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers. We know that the values of two equivalent rational numbers is equal. \(\therefore\frac{\text{x}}{-24}=-\frac{3}{8}\) \(\Rightarrow\text{x}\times8=-3\times(-24)\) \(\Big(\frac{\text{a}}{\text{b}}=\frac{\text{c}}{\text{d}}\Rightarrow\text{ad}=\text{bc}\Big)\) \(\Rightarrow8\text{x}=72\) \(\Rightarrow\frac{8\text{x}}{8}=\frac{72}{8}\) (Dividing both sides by 8) \(\Rightarrow\text{x}=9 \) Hence, the correct answer is option (c).
RATIONAL NUMBERS
297809
Which of the following is correct?
1 \(\frac{5}{9}>\frac{-3}{8}\)
2 \(\frac{5}{9}<\frac{-3}{-8}\)
3 \(\frac{2}{-3}<\frac{-8}{7}\)
4 \(\frac{4}{-3}>\frac{-8}{7}\)
Explanation:
\(\frac{5}{9}>\frac{-3}{8}\) Consider the rational numbers \(\frac{5}{9}\text{ and } \frac{-3}{-8}\) We write the rational number \(\frac{-3}{-8}\) with positive denominator. \(\frac{-3}{-8}=\frac{-3\times(-1)}{-8\times(-1)}=\frac{3}{8}\) Now, we write the rational numbers so that they have a common denominator. LCM of 8 and 9 = 72 So, \(\frac{5}{9}=\frac{5\times8}{9\times8}=\frac{40}{72}\) and \(\frac{3}{8}=\frac{3\times9}{8\times9}=\frac{27}{72}\) Now, \(40>27\) \(\Rightarrow\frac{40}{72}>\frac{27}{72}\) \(\Rightarrow\frac{5}{9}>\frac{3}{8}\) \(\Rightarrow\frac{5}{9}>\frac{-3}{-8}\) Hence the correct option is (a).
297806
Difference of the numbers 32 and 27.091 is:
1 30.791
2 5.909
3 4.909
4 3.909
Explanation:
4.909 32 - 27.091 = 4.909
RATIONAL NUMBERS
297807
Product of 3.92 × 0.1 × 0.0 × 6.3 is:
1 0.392
2 0.1176
3 0
4 6.3
Explanation:
0 When a number is multiplied by zero, it gives always zero. Then 3.92 × 0.1 × 0.0 × 6.3 = 0
RATIONAL NUMBERS
297808
If \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers, then x =?
1 3
2 6
3 9
4 12
Explanation:
9 It is given that the rational numbers \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers. We know that the values of two equivalent rational numbers is equal. \(\therefore\frac{\text{x}}{-24}=-\frac{3}{8}\) \(\Rightarrow\text{x}\times8=-3\times(-24)\) \(\Big(\frac{\text{a}}{\text{b}}=\frac{\text{c}}{\text{d}}\Rightarrow\text{ad}=\text{bc}\Big)\) \(\Rightarrow8\text{x}=72\) \(\Rightarrow\frac{8\text{x}}{8}=\frac{72}{8}\) (Dividing both sides by 8) \(\Rightarrow\text{x}=9 \) Hence, the correct answer is option (c).
RATIONAL NUMBERS
297809
Which of the following is correct?
1 \(\frac{5}{9}>\frac{-3}{8}\)
2 \(\frac{5}{9}<\frac{-3}{-8}\)
3 \(\frac{2}{-3}<\frac{-8}{7}\)
4 \(\frac{4}{-3}>\frac{-8}{7}\)
Explanation:
\(\frac{5}{9}>\frac{-3}{8}\) Consider the rational numbers \(\frac{5}{9}\text{ and } \frac{-3}{-8}\) We write the rational number \(\frac{-3}{-8}\) with positive denominator. \(\frac{-3}{-8}=\frac{-3\times(-1)}{-8\times(-1)}=\frac{3}{8}\) Now, we write the rational numbers so that they have a common denominator. LCM of 8 and 9 = 72 So, \(\frac{5}{9}=\frac{5\times8}{9\times8}=\frac{40}{72}\) and \(\frac{3}{8}=\frac{3\times9}{8\times9}=\frac{27}{72}\) Now, \(40>27\) \(\Rightarrow\frac{40}{72}>\frac{27}{72}\) \(\Rightarrow\frac{5}{9}>\frac{3}{8}\) \(\Rightarrow\frac{5}{9}>\frac{-3}{-8}\) Hence the correct option is (a).
297806
Difference of the numbers 32 and 27.091 is:
1 30.791
2 5.909
3 4.909
4 3.909
Explanation:
4.909 32 - 27.091 = 4.909
RATIONAL NUMBERS
297807
Product of 3.92 × 0.1 × 0.0 × 6.3 is:
1 0.392
2 0.1176
3 0
4 6.3
Explanation:
0 When a number is multiplied by zero, it gives always zero. Then 3.92 × 0.1 × 0.0 × 6.3 = 0
RATIONAL NUMBERS
297808
If \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers, then x =?
1 3
2 6
3 9
4 12
Explanation:
9 It is given that the rational numbers \(-\frac{3}{8}\text{ and }\frac{\text{x}}{-24}\) are equivalent rational numbers. We know that the values of two equivalent rational numbers is equal. \(\therefore\frac{\text{x}}{-24}=-\frac{3}{8}\) \(\Rightarrow\text{x}\times8=-3\times(-24)\) \(\Big(\frac{\text{a}}{\text{b}}=\frac{\text{c}}{\text{d}}\Rightarrow\text{ad}=\text{bc}\Big)\) \(\Rightarrow8\text{x}=72\) \(\Rightarrow\frac{8\text{x}}{8}=\frac{72}{8}\) (Dividing both sides by 8) \(\Rightarrow\text{x}=9 \) Hence, the correct answer is option (c).
RATIONAL NUMBERS
297809
Which of the following is correct?
1 \(\frac{5}{9}>\frac{-3}{8}\)
2 \(\frac{5}{9}<\frac{-3}{-8}\)
3 \(\frac{2}{-3}<\frac{-8}{7}\)
4 \(\frac{4}{-3}>\frac{-8}{7}\)
Explanation:
\(\frac{5}{9}>\frac{-3}{8}\) Consider the rational numbers \(\frac{5}{9}\text{ and } \frac{-3}{-8}\) We write the rational number \(\frac{-3}{-8}\) with positive denominator. \(\frac{-3}{-8}=\frac{-3\times(-1)}{-8\times(-1)}=\frac{3}{8}\) Now, we write the rational numbers so that they have a common denominator. LCM of 8 and 9 = 72 So, \(\frac{5}{9}=\frac{5\times8}{9\times8}=\frac{40}{72}\) and \(\frac{3}{8}=\frac{3\times9}{8\times9}=\frac{27}{72}\) Now, \(40>27\) \(\Rightarrow\frac{40}{72}>\frac{27}{72}\) \(\Rightarrow\frac{5}{9}>\frac{3}{8}\) \(\Rightarrow\frac{5}{9}>\frac{-3}{-8}\) Hence the correct option is (a).