297689
Which of the following cannot be the measures of a triangle?
1 9cm, 6cm, 5cm
2 7cm, 7cm, 5cm
3 13cm, 7cm, 6cm
4 9.5cm, 8cm, 7cm
Explanation:
13cm, 7cm, 6cm
PRACTICAL GEOMETRY
297592
Mark \((\checkmark)\) against the correct answer. In the given figure, AOB is a straight line and the ray OC stands on it. If \(\angle\text{BOC}=132^\circ\), then \(\angle\text{AOC}=?\)
1 68°
2 48°
3 42°
4 None of these.
Explanation:
48° In the figure \(\angle\text{BOC}=132^\circ\) But \(\angle\text{AOC}+\angle\text{BOC}=180^\circ\) (Linear pair) \(\Rightarrow\angle\text{AOC}+132^\circ=180^\circ\) \(\Rightarrow\angle\text{AOC}=180^\circ-132^\circ=48^\circ\)
PRACTICAL GEOMETRY
297593
Mark \((\checkmark)\) against the correct answer. In a \(\triangle\text{ABC,}\) if \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C},\) then \(\angle\text{B}={}?\)
1 30°
2 90°
3 60°
4 45°
Explanation:
60° In \(\triangle\text{ABC,}\) Let \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C}=\text{x}\) \(\therefore\angle\text{A}=\frac{1}{2}\text{x},\angle\text{B}=\frac{1}{3}\text{x},\angle\text{C}=\frac{1}{6}\text{x}\) \(\therefore\) Ratio in A, B and C \(=\frac{1}{2}:\frac{1}{3}:\frac{1}{6}\) \(=\frac{3:2:1}{6}\) Put \(\angle\text{A}+\angle\text{B}+\angle\text{C}=180^\circ\) (Angles of a triangle) \(\therefore\angle\text{B}=\frac{180^\circ\times2}{3+2+1}=\frac{180^\circ\times2}{6}=60^\circ\)
PRACTICAL GEOMETRY
297595
Mark \((\checkmark)\) against the correct answer. Two supplementary angles are in the ratio 3 : 2. The smaller angle measures:
1 108°
2 81°
3 72°
4 None of these.
Explanation:
72° Two supplementary angle are in the ratio = 3 : 2 Let first angle = 3x Second angle = 2x But 3x + 2x = 180° 5x = 180° x = 36° Smaller angle = 2x = 2 × 36° = 72°
297689
Which of the following cannot be the measures of a triangle?
1 9cm, 6cm, 5cm
2 7cm, 7cm, 5cm
3 13cm, 7cm, 6cm
4 9.5cm, 8cm, 7cm
Explanation:
13cm, 7cm, 6cm
PRACTICAL GEOMETRY
297592
Mark \((\checkmark)\) against the correct answer. In the given figure, AOB is a straight line and the ray OC stands on it. If \(\angle\text{BOC}=132^\circ\), then \(\angle\text{AOC}=?\)
1 68°
2 48°
3 42°
4 None of these.
Explanation:
48° In the figure \(\angle\text{BOC}=132^\circ\) But \(\angle\text{AOC}+\angle\text{BOC}=180^\circ\) (Linear pair) \(\Rightarrow\angle\text{AOC}+132^\circ=180^\circ\) \(\Rightarrow\angle\text{AOC}=180^\circ-132^\circ=48^\circ\)
PRACTICAL GEOMETRY
297593
Mark \((\checkmark)\) against the correct answer. In a \(\triangle\text{ABC,}\) if \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C},\) then \(\angle\text{B}={}?\)
1 30°
2 90°
3 60°
4 45°
Explanation:
60° In \(\triangle\text{ABC,}\) Let \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C}=\text{x}\) \(\therefore\angle\text{A}=\frac{1}{2}\text{x},\angle\text{B}=\frac{1}{3}\text{x},\angle\text{C}=\frac{1}{6}\text{x}\) \(\therefore\) Ratio in A, B and C \(=\frac{1}{2}:\frac{1}{3}:\frac{1}{6}\) \(=\frac{3:2:1}{6}\) Put \(\angle\text{A}+\angle\text{B}+\angle\text{C}=180^\circ\) (Angles of a triangle) \(\therefore\angle\text{B}=\frac{180^\circ\times2}{3+2+1}=\frac{180^\circ\times2}{6}=60^\circ\)
PRACTICAL GEOMETRY
297595
Mark \((\checkmark)\) against the correct answer. Two supplementary angles are in the ratio 3 : 2. The smaller angle measures:
1 108°
2 81°
3 72°
4 None of these.
Explanation:
72° Two supplementary angle are in the ratio = 3 : 2 Let first angle = 3x Second angle = 2x But 3x + 2x = 180° 5x = 180° x = 36° Smaller angle = 2x = 2 × 36° = 72°
297689
Which of the following cannot be the measures of a triangle?
1 9cm, 6cm, 5cm
2 7cm, 7cm, 5cm
3 13cm, 7cm, 6cm
4 9.5cm, 8cm, 7cm
Explanation:
13cm, 7cm, 6cm
PRACTICAL GEOMETRY
297592
Mark \((\checkmark)\) against the correct answer. In the given figure, AOB is a straight line and the ray OC stands on it. If \(\angle\text{BOC}=132^\circ\), then \(\angle\text{AOC}=?\)
1 68°
2 48°
3 42°
4 None of these.
Explanation:
48° In the figure \(\angle\text{BOC}=132^\circ\) But \(\angle\text{AOC}+\angle\text{BOC}=180^\circ\) (Linear pair) \(\Rightarrow\angle\text{AOC}+132^\circ=180^\circ\) \(\Rightarrow\angle\text{AOC}=180^\circ-132^\circ=48^\circ\)
PRACTICAL GEOMETRY
297593
Mark \((\checkmark)\) against the correct answer. In a \(\triangle\text{ABC,}\) if \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C},\) then \(\angle\text{B}={}?\)
1 30°
2 90°
3 60°
4 45°
Explanation:
60° In \(\triangle\text{ABC,}\) Let \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C}=\text{x}\) \(\therefore\angle\text{A}=\frac{1}{2}\text{x},\angle\text{B}=\frac{1}{3}\text{x},\angle\text{C}=\frac{1}{6}\text{x}\) \(\therefore\) Ratio in A, B and C \(=\frac{1}{2}:\frac{1}{3}:\frac{1}{6}\) \(=\frac{3:2:1}{6}\) Put \(\angle\text{A}+\angle\text{B}+\angle\text{C}=180^\circ\) (Angles of a triangle) \(\therefore\angle\text{B}=\frac{180^\circ\times2}{3+2+1}=\frac{180^\circ\times2}{6}=60^\circ\)
PRACTICAL GEOMETRY
297595
Mark \((\checkmark)\) against the correct answer. Two supplementary angles are in the ratio 3 : 2. The smaller angle measures:
1 108°
2 81°
3 72°
4 None of these.
Explanation:
72° Two supplementary angle are in the ratio = 3 : 2 Let first angle = 3x Second angle = 2x But 3x + 2x = 180° 5x = 180° x = 36° Smaller angle = 2x = 2 × 36° = 72°
297689
Which of the following cannot be the measures of a triangle?
1 9cm, 6cm, 5cm
2 7cm, 7cm, 5cm
3 13cm, 7cm, 6cm
4 9.5cm, 8cm, 7cm
Explanation:
13cm, 7cm, 6cm
PRACTICAL GEOMETRY
297592
Mark \((\checkmark)\) against the correct answer. In the given figure, AOB is a straight line and the ray OC stands on it. If \(\angle\text{BOC}=132^\circ\), then \(\angle\text{AOC}=?\)
1 68°
2 48°
3 42°
4 None of these.
Explanation:
48° In the figure \(\angle\text{BOC}=132^\circ\) But \(\angle\text{AOC}+\angle\text{BOC}=180^\circ\) (Linear pair) \(\Rightarrow\angle\text{AOC}+132^\circ=180^\circ\) \(\Rightarrow\angle\text{AOC}=180^\circ-132^\circ=48^\circ\)
PRACTICAL GEOMETRY
297593
Mark \((\checkmark)\) against the correct answer. In a \(\triangle\text{ABC,}\) if \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C},\) then \(\angle\text{B}={}?\)
1 30°
2 90°
3 60°
4 45°
Explanation:
60° In \(\triangle\text{ABC,}\) Let \(2\angle\text{A}=3\angle\text{B}=6\angle\text{C}=\text{x}\) \(\therefore\angle\text{A}=\frac{1}{2}\text{x},\angle\text{B}=\frac{1}{3}\text{x},\angle\text{C}=\frac{1}{6}\text{x}\) \(\therefore\) Ratio in A, B and C \(=\frac{1}{2}:\frac{1}{3}:\frac{1}{6}\) \(=\frac{3:2:1}{6}\) Put \(\angle\text{A}+\angle\text{B}+\angle\text{C}=180^\circ\) (Angles of a triangle) \(\therefore\angle\text{B}=\frac{180^\circ\times2}{3+2+1}=\frac{180^\circ\times2}{6}=60^\circ\)
PRACTICAL GEOMETRY
297595
Mark \((\checkmark)\) against the correct answer. Two supplementary angles are in the ratio 3 : 2. The smaller angle measures:
1 108°
2 81°
3 72°
4 None of these.
Explanation:
72° Two supplementary angle are in the ratio = 3 : 2 Let first angle = 3x Second angle = 2x But 3x + 2x = 180° 5x = 180° x = 36° Smaller angle = 2x = 2 × 36° = 72°