Explanation:
60°, 60°, 120°, 120°
PQ and RS intersect at O. then,
\(\angle\text{POS}=\angle\text{QOR}\) (opposite angles)
\(\angle\text{SOQ}=\angle\text{POR}\) (opposite angles)
Given, \(\angle\text{POS}=2\angle\text{SOQ}\)
Sum of all angles = 360
\(\angle\text{POS}+\angle\text{SOQ}+\angle\text{QOR}+\angle\text{ROP}=360\)
\(6\angle\text{SOQ}=360\)
\(\angle\text{SOQ}=60\)
Hence, the four angles = 60°, 60°, 120°, 120°.