04. CHEMICAL KINETICS[KARNATAKA CET EXCLUSIVE]
CHEMISTRY(KCET)

285423 If the rate constant for a first order reaction is \(k\), the time \((t)\) required for the completion of \(99 \%\) of the reaction is given by

1 \(t=\frac{6.909}{k}\)
2 \(t=\frac{4.606}{k}\)
3 \(t=\frac{2.303}{k}\)
4 \(t=\frac{0.693}{k}\)
CHEMISTRY(KCET)

285424 The rate of a gaseous reaction is given by the expression, \(k[A][B]^2\). If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is

1 \(\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 8
4 16
CHEMISTRY(KCET)

285425 Higher order \((>3)\) reactions are rare due to

1 shifting of equilibrium towards reactants due to elastic collisions
2 loss of active species on collision
3 low probability of simultaneous collision of all reacting species
4 increase in entropy as more molecules are involved.
CHEMISTRY(KCET)

285426 The time required for \(60 \%\) completion of a first order reaction is 50 min . The time required for \(93.6 \%\) completion of the same reaction will be

1 83.8 min
2 50 min
3 150 min
4 100 min .
CHEMISTRY(KCET)

285427 For an elementary reaction.
\(2 A+3 B \rightarrow 4 C+D\) the rate of appearance of \(C\) at time ' \(t\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(B\) at ' \(t\) ', \(t\) will be

1 \(\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
4 \(\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
CHEMISTRY(KCET)

285423 If the rate constant for a first order reaction is \(k\), the time \((t)\) required for the completion of \(99 \%\) of the reaction is given by

1 \(t=\frac{6.909}{k}\)
2 \(t=\frac{4.606}{k}\)
3 \(t=\frac{2.303}{k}\)
4 \(t=\frac{0.693}{k}\)
CHEMISTRY(KCET)

285424 The rate of a gaseous reaction is given by the expression, \(k[A][B]^2\). If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is

1 \(\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 8
4 16
CHEMISTRY(KCET)

285425 Higher order \((>3)\) reactions are rare due to

1 shifting of equilibrium towards reactants due to elastic collisions
2 loss of active species on collision
3 low probability of simultaneous collision of all reacting species
4 increase in entropy as more molecules are involved.
CHEMISTRY(KCET)

285426 The time required for \(60 \%\) completion of a first order reaction is 50 min . The time required for \(93.6 \%\) completion of the same reaction will be

1 83.8 min
2 50 min
3 150 min
4 100 min .
CHEMISTRY(KCET)

285427 For an elementary reaction.
\(2 A+3 B \rightarrow 4 C+D\) the rate of appearance of \(C\) at time ' \(t\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(B\) at ' \(t\) ', \(t\) will be

1 \(\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
4 \(\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHEMISTRY(KCET)

285423 If the rate constant for a first order reaction is \(k\), the time \((t)\) required for the completion of \(99 \%\) of the reaction is given by

1 \(t=\frac{6.909}{k}\)
2 \(t=\frac{4.606}{k}\)
3 \(t=\frac{2.303}{k}\)
4 \(t=\frac{0.693}{k}\)
CHEMISTRY(KCET)

285424 The rate of a gaseous reaction is given by the expression, \(k[A][B]^2\). If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is

1 \(\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 8
4 16
CHEMISTRY(KCET)

285425 Higher order \((>3)\) reactions are rare due to

1 shifting of equilibrium towards reactants due to elastic collisions
2 loss of active species on collision
3 low probability of simultaneous collision of all reacting species
4 increase in entropy as more molecules are involved.
CHEMISTRY(KCET)

285426 The time required for \(60 \%\) completion of a first order reaction is 50 min . The time required for \(93.6 \%\) completion of the same reaction will be

1 83.8 min
2 50 min
3 150 min
4 100 min .
CHEMISTRY(KCET)

285427 For an elementary reaction.
\(2 A+3 B \rightarrow 4 C+D\) the rate of appearance of \(C\) at time ' \(t\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(B\) at ' \(t\) ', \(t\) will be

1 \(\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
4 \(\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
CHEMISTRY(KCET)

285423 If the rate constant for a first order reaction is \(k\), the time \((t)\) required for the completion of \(99 \%\) of the reaction is given by

1 \(t=\frac{6.909}{k}\)
2 \(t=\frac{4.606}{k}\)
3 \(t=\frac{2.303}{k}\)
4 \(t=\frac{0.693}{k}\)
CHEMISTRY(KCET)

285424 The rate of a gaseous reaction is given by the expression, \(k[A][B]^2\). If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is

1 \(\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 8
4 16
CHEMISTRY(KCET)

285425 Higher order \((>3)\) reactions are rare due to

1 shifting of equilibrium towards reactants due to elastic collisions
2 loss of active species on collision
3 low probability of simultaneous collision of all reacting species
4 increase in entropy as more molecules are involved.
CHEMISTRY(KCET)

285426 The time required for \(60 \%\) completion of a first order reaction is 50 min . The time required for \(93.6 \%\) completion of the same reaction will be

1 83.8 min
2 50 min
3 150 min
4 100 min .
CHEMISTRY(KCET)

285427 For an elementary reaction.
\(2 A+3 B \rightarrow 4 C+D\) the rate of appearance of \(C\) at time ' \(t\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(B\) at ' \(t\) ', \(t\) will be

1 \(\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
4 \(\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
CHEMISTRY(KCET)

285423 If the rate constant for a first order reaction is \(k\), the time \((t)\) required for the completion of \(99 \%\) of the reaction is given by

1 \(t=\frac{6.909}{k}\)
2 \(t=\frac{4.606}{k}\)
3 \(t=\frac{2.303}{k}\)
4 \(t=\frac{0.693}{k}\)
CHEMISTRY(KCET)

285424 The rate of a gaseous reaction is given by the expression, \(k[A][B]^2\). If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is

1 \(\frac{1}{16}\)
2 \(\frac{1}{8}\)
3 8
4 16
CHEMISTRY(KCET)

285425 Higher order \((>3)\) reactions are rare due to

1 shifting of equilibrium towards reactants due to elastic collisions
2 loss of active species on collision
3 low probability of simultaneous collision of all reacting species
4 increase in entropy as more molecules are involved.
CHEMISTRY(KCET)

285426 The time required for \(60 \%\) completion of a first order reaction is 50 min . The time required for \(93.6 \%\) completion of the same reaction will be

1 83.8 min
2 50 min
3 150 min
4 100 min .
CHEMISTRY(KCET)

285427 For an elementary reaction.
\(2 A+3 B \rightarrow 4 C+D\) the rate of appearance of \(C\) at time ' \(t\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(B\) at ' \(t\) ', \(t\) will be

1 \(\frac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{1}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
4 \(\frac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)