03. ELECTROCHEMISTRY[KARNATAKA CET EXCLUSIVE]
CHEMISTRY(KCET)

285383 During the electrolysis of brine, by using inert electrodes,

1 \(\mathrm{O}_2\) liberates at anode
2 \(\mathrm{H}_2\) liberates at anode
3 Na deposits on cathode
4 \(\mathrm{Cl}_2\) liberates at anode
CHEMISTRY(KCET)

285384 Consider the following 4 electrodes
\(\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\);
\(\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\)
C: \(\mathrm{Ag}^{+}\left(0.01 \mathrm{M} / \mathrm{Ag}_{(\mathrm{s})}\right.\);
\(\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.80 \mathrm{~V}\)
Then reduction potential in volts of the electrodes in the order.

1 B\(>\) C \(>\) D \(>\) A
2 C\(>\) D \(>\) A \(>\) B
3 A\(>\) D \(>\) C \(>\) B
4 A\(>\) B \(>\) C \(>\) D
CHEMISTRY(KCET)

285385 Specific conductance of 0.1 M HNO 3 is\(6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}\). The molar conductance of the solution is

1 \(6.300 . \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(630 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(315 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
CHEMISTRY(KCET)

285386 In fuel cells,\(\qquad\) are used as catalysts.

1 zinc-mercury
2 lead-manganese
3 platinum-palladium
4 nickel-cadmium
CHEMISTRY(KCET)

285387 The molar conductivity is maximum for the solution of concentration

1 0.005 M
2 0.001 M
3 0.004 M
4 0.002 M .
CHEMISTRY(KCET)

285383 During the electrolysis of brine, by using inert electrodes,

1 \(\mathrm{O}_2\) liberates at anode
2 \(\mathrm{H}_2\) liberates at anode
3 Na deposits on cathode
4 \(\mathrm{Cl}_2\) liberates at anode
CHEMISTRY(KCET)

285384 Consider the following 4 electrodes
\(\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\);
\(\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\)
C: \(\mathrm{Ag}^{+}\left(0.01 \mathrm{M} / \mathrm{Ag}_{(\mathrm{s})}\right.\);
\(\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.80 \mathrm{~V}\)
Then reduction potential in volts of the electrodes in the order.

1 B\(>\) C \(>\) D \(>\) A
2 C\(>\) D \(>\) A \(>\) B
3 A\(>\) D \(>\) C \(>\) B
4 A\(>\) B \(>\) C \(>\) D
CHEMISTRY(KCET)

285385 Specific conductance of 0.1 M HNO 3 is\(6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}\). The molar conductance of the solution is

1 \(6.300 . \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(630 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(315 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
CHEMISTRY(KCET)

285386 In fuel cells,\(\qquad\) are used as catalysts.

1 zinc-mercury
2 lead-manganese
3 platinum-palladium
4 nickel-cadmium
CHEMISTRY(KCET)

285387 The molar conductivity is maximum for the solution of concentration

1 0.005 M
2 0.001 M
3 0.004 M
4 0.002 M .
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHEMISTRY(KCET)

285383 During the electrolysis of brine, by using inert electrodes,

1 \(\mathrm{O}_2\) liberates at anode
2 \(\mathrm{H}_2\) liberates at anode
3 Na deposits on cathode
4 \(\mathrm{Cl}_2\) liberates at anode
CHEMISTRY(KCET)

285384 Consider the following 4 electrodes
\(\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\);
\(\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\)
C: \(\mathrm{Ag}^{+}\left(0.01 \mathrm{M} / \mathrm{Ag}_{(\mathrm{s})}\right.\);
\(\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.80 \mathrm{~V}\)
Then reduction potential in volts of the electrodes in the order.

1 B\(>\) C \(>\) D \(>\) A
2 C\(>\) D \(>\) A \(>\) B
3 A\(>\) D \(>\) C \(>\) B
4 A\(>\) B \(>\) C \(>\) D
CHEMISTRY(KCET)

285385 Specific conductance of 0.1 M HNO 3 is\(6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}\). The molar conductance of the solution is

1 \(6.300 . \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(630 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(315 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
CHEMISTRY(KCET)

285386 In fuel cells,\(\qquad\) are used as catalysts.

1 zinc-mercury
2 lead-manganese
3 platinum-palladium
4 nickel-cadmium
CHEMISTRY(KCET)

285387 The molar conductivity is maximum for the solution of concentration

1 0.005 M
2 0.001 M
3 0.004 M
4 0.002 M .
CHEMISTRY(KCET)

285383 During the electrolysis of brine, by using inert electrodes,

1 \(\mathrm{O}_2\) liberates at anode
2 \(\mathrm{H}_2\) liberates at anode
3 Na deposits on cathode
4 \(\mathrm{Cl}_2\) liberates at anode
CHEMISTRY(KCET)

285384 Consider the following 4 electrodes
\(\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\);
\(\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\)
C: \(\mathrm{Ag}^{+}\left(0.01 \mathrm{M} / \mathrm{Ag}_{(\mathrm{s})}\right.\);
\(\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.80 \mathrm{~V}\)
Then reduction potential in volts of the electrodes in the order.

1 B\(>\) C \(>\) D \(>\) A
2 C\(>\) D \(>\) A \(>\) B
3 A\(>\) D \(>\) C \(>\) B
4 A\(>\) B \(>\) C \(>\) D
CHEMISTRY(KCET)

285385 Specific conductance of 0.1 M HNO 3 is\(6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}\). The molar conductance of the solution is

1 \(6.300 . \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(630 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(315 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
CHEMISTRY(KCET)

285386 In fuel cells,\(\qquad\) are used as catalysts.

1 zinc-mercury
2 lead-manganese
3 platinum-palladium
4 nickel-cadmium
CHEMISTRY(KCET)

285387 The molar conductivity is maximum for the solution of concentration

1 0.005 M
2 0.001 M
3 0.004 M
4 0.002 M .
CHEMISTRY(KCET)

285383 During the electrolysis of brine, by using inert electrodes,

1 \(\mathrm{O}_2\) liberates at anode
2 \(\mathrm{H}_2\) liberates at anode
3 Na deposits on cathode
4 \(\mathrm{Cl}_2\) liberates at anode
CHEMISTRY(KCET)

285384 Consider the following 4 electrodes
\(\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\);
\(\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}\)
C: \(\mathrm{Ag}^{+}\left(0.01 \mathrm{M} / \mathrm{Ag}_{(\mathrm{s})}\right.\);
\(\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.80 \mathrm{~V}\)
Then reduction potential in volts of the electrodes in the order.

1 B\(>\) C \(>\) D \(>\) A
2 C\(>\) D \(>\) A \(>\) B
3 A\(>\) D \(>\) C \(>\) B
4 A\(>\) B \(>\) C \(>\) D
CHEMISTRY(KCET)

285385 Specific conductance of 0.1 M HNO 3 is\(6.3 \times 10^{-2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}\). The molar conductance of the solution is

1 \(6.300 . \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
2 \(63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
3 \(630 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
4 \(315 \mathrm{ohm}^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}\)
CHEMISTRY(KCET)

285386 In fuel cells,\(\qquad\) are used as catalysts.

1 zinc-mercury
2 lead-manganese
3 platinum-palladium
4 nickel-cadmium
CHEMISTRY(KCET)

285387 The molar conductivity is maximum for the solution of concentration

1 0.005 M
2 0.001 M
3 0.004 M
4 0.002 M .