B. Incoherent Addition of Wave
WAVE OPTICS

283120 In Young's double slit experiment, the ration of the intensities of the dark and bright fringes is 16:36. The ratio of the amplitudes of the two light waves is

1 \(3: 2\)
2 \(36: 16\)
3 \(5: 1\)
4 \(2: 1\)
WAVE OPTICS

283122 In a biprism experiment, monochromatic light of wavelength \((\lambda)\) is used. The distance between two coherent sources is kept constant. If the distance between slit and eyepiece(D) is varied as \(D_1, D_2, D_3\) and \(D_4\), the corresponding measured fringe widths are \(z_1, z_2, z_3\) and \(z_4\) then

1 \(z_1 \sqrt{D_1}=z_2 \sqrt{D_2}=z_3 \sqrt{D_3}=z_4 \sqrt{D_4}\)
2 \(\mathrm{z}_1 \mathrm{D}_1^2=\mathrm{z}_2 \mathrm{D}_2^2=\mathrm{z}_3 \mathrm{D}_3^2=\mathrm{z}_4 \mathrm{D}_4^2\)
3 \(\mathrm{z}_1 \mathrm{D}_1=\mathrm{z}_2 \mathrm{D}_2=\mathrm{z}_3 \mathrm{D}_3=\mathrm{z}_4 \mathrm{D}_4\)
4 \(\frac{\mathrm{z}_1}{\mathrm{D}_1}=\frac{\mathrm{z}_2}{\mathrm{D}_2}=\frac{\mathrm{z}_3}{\mathrm{D}_3}=\frac{\mathrm{z}_4}{\mathrm{D}_4}\)
WAVE OPTICS

283123 Waves from two coherent sources of light having intensity ratio \(I_1: I_2\) equal to ' \(x\) ' interfere. Then in the interference pattern obtained on the screen, the value of \(\left(I_{\text {max }}-I_{\text {min }}\right) /\left(I_{\text {max }}+I_{\text {min }}\right)\) is

1 \(\sqrt{\mathrm{x}} / \mathrm{x}-1\)
2 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
3 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
4 \(2 \sqrt{\mathrm{x}} / \mathrm{x}+1\)
WAVE OPTICS

283124 In biprism experiment, the fringe width is 0.4 \(\mathrm{mm}\). What is the distance between \(4^{\text {th }}\) dark band and \(6^{\text {th }}\) bright band on the same side?

1 \(0.75 \mathrm{~mm}\)
2 \(0.5 \mathrm{~mm}\)
3 \(1 \mathrm{~mm}\)
4 \(1.5 \mathrm{~mm}\)
WAVE OPTICS

283125 The ratio if intensities of two wave producing interference is \(9: 4\), then the ratio of the resultant maximum and minimum intensities will be \(\left(\cos \frac{\pi}{3}=\frac{1}{2}\right)\)

1 \(25: 1\)
2 \(5: 1\)
3 \(9: 4\)
4 4 :
WAVE OPTICS

283120 In Young's double slit experiment, the ration of the intensities of the dark and bright fringes is 16:36. The ratio of the amplitudes of the two light waves is

1 \(3: 2\)
2 \(36: 16\)
3 \(5: 1\)
4 \(2: 1\)
WAVE OPTICS

283122 In a biprism experiment, monochromatic light of wavelength \((\lambda)\) is used. The distance between two coherent sources is kept constant. If the distance between slit and eyepiece(D) is varied as \(D_1, D_2, D_3\) and \(D_4\), the corresponding measured fringe widths are \(z_1, z_2, z_3\) and \(z_4\) then

1 \(z_1 \sqrt{D_1}=z_2 \sqrt{D_2}=z_3 \sqrt{D_3}=z_4 \sqrt{D_4}\)
2 \(\mathrm{z}_1 \mathrm{D}_1^2=\mathrm{z}_2 \mathrm{D}_2^2=\mathrm{z}_3 \mathrm{D}_3^2=\mathrm{z}_4 \mathrm{D}_4^2\)
3 \(\mathrm{z}_1 \mathrm{D}_1=\mathrm{z}_2 \mathrm{D}_2=\mathrm{z}_3 \mathrm{D}_3=\mathrm{z}_4 \mathrm{D}_4\)
4 \(\frac{\mathrm{z}_1}{\mathrm{D}_1}=\frac{\mathrm{z}_2}{\mathrm{D}_2}=\frac{\mathrm{z}_3}{\mathrm{D}_3}=\frac{\mathrm{z}_4}{\mathrm{D}_4}\)
WAVE OPTICS

283123 Waves from two coherent sources of light having intensity ratio \(I_1: I_2\) equal to ' \(x\) ' interfere. Then in the interference pattern obtained on the screen, the value of \(\left(I_{\text {max }}-I_{\text {min }}\right) /\left(I_{\text {max }}+I_{\text {min }}\right)\) is

1 \(\sqrt{\mathrm{x}} / \mathrm{x}-1\)
2 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
3 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
4 \(2 \sqrt{\mathrm{x}} / \mathrm{x}+1\)
WAVE OPTICS

283124 In biprism experiment, the fringe width is 0.4 \(\mathrm{mm}\). What is the distance between \(4^{\text {th }}\) dark band and \(6^{\text {th }}\) bright band on the same side?

1 \(0.75 \mathrm{~mm}\)
2 \(0.5 \mathrm{~mm}\)
3 \(1 \mathrm{~mm}\)
4 \(1.5 \mathrm{~mm}\)
WAVE OPTICS

283125 The ratio if intensities of two wave producing interference is \(9: 4\), then the ratio of the resultant maximum and minimum intensities will be \(\left(\cos \frac{\pi}{3}=\frac{1}{2}\right)\)

1 \(25: 1\)
2 \(5: 1\)
3 \(9: 4\)
4 4 :
WAVE OPTICS

283120 In Young's double slit experiment, the ration of the intensities of the dark and bright fringes is 16:36. The ratio of the amplitudes of the two light waves is

1 \(3: 2\)
2 \(36: 16\)
3 \(5: 1\)
4 \(2: 1\)
WAVE OPTICS

283122 In a biprism experiment, monochromatic light of wavelength \((\lambda)\) is used. The distance between two coherent sources is kept constant. If the distance between slit and eyepiece(D) is varied as \(D_1, D_2, D_3\) and \(D_4\), the corresponding measured fringe widths are \(z_1, z_2, z_3\) and \(z_4\) then

1 \(z_1 \sqrt{D_1}=z_2 \sqrt{D_2}=z_3 \sqrt{D_3}=z_4 \sqrt{D_4}\)
2 \(\mathrm{z}_1 \mathrm{D}_1^2=\mathrm{z}_2 \mathrm{D}_2^2=\mathrm{z}_3 \mathrm{D}_3^2=\mathrm{z}_4 \mathrm{D}_4^2\)
3 \(\mathrm{z}_1 \mathrm{D}_1=\mathrm{z}_2 \mathrm{D}_2=\mathrm{z}_3 \mathrm{D}_3=\mathrm{z}_4 \mathrm{D}_4\)
4 \(\frac{\mathrm{z}_1}{\mathrm{D}_1}=\frac{\mathrm{z}_2}{\mathrm{D}_2}=\frac{\mathrm{z}_3}{\mathrm{D}_3}=\frac{\mathrm{z}_4}{\mathrm{D}_4}\)
WAVE OPTICS

283123 Waves from two coherent sources of light having intensity ratio \(I_1: I_2\) equal to ' \(x\) ' interfere. Then in the interference pattern obtained on the screen, the value of \(\left(I_{\text {max }}-I_{\text {min }}\right) /\left(I_{\text {max }}+I_{\text {min }}\right)\) is

1 \(\sqrt{\mathrm{x}} / \mathrm{x}-1\)
2 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
3 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
4 \(2 \sqrt{\mathrm{x}} / \mathrm{x}+1\)
WAVE OPTICS

283124 In biprism experiment, the fringe width is 0.4 \(\mathrm{mm}\). What is the distance between \(4^{\text {th }}\) dark band and \(6^{\text {th }}\) bright band on the same side?

1 \(0.75 \mathrm{~mm}\)
2 \(0.5 \mathrm{~mm}\)
3 \(1 \mathrm{~mm}\)
4 \(1.5 \mathrm{~mm}\)
WAVE OPTICS

283125 The ratio if intensities of two wave producing interference is \(9: 4\), then the ratio of the resultant maximum and minimum intensities will be \(\left(\cos \frac{\pi}{3}=\frac{1}{2}\right)\)

1 \(25: 1\)
2 \(5: 1\)
3 \(9: 4\)
4 4 :
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVE OPTICS

283120 In Young's double slit experiment, the ration of the intensities of the dark and bright fringes is 16:36. The ratio of the amplitudes of the two light waves is

1 \(3: 2\)
2 \(36: 16\)
3 \(5: 1\)
4 \(2: 1\)
WAVE OPTICS

283122 In a biprism experiment, monochromatic light of wavelength \((\lambda)\) is used. The distance between two coherent sources is kept constant. If the distance between slit and eyepiece(D) is varied as \(D_1, D_2, D_3\) and \(D_4\), the corresponding measured fringe widths are \(z_1, z_2, z_3\) and \(z_4\) then

1 \(z_1 \sqrt{D_1}=z_2 \sqrt{D_2}=z_3 \sqrt{D_3}=z_4 \sqrt{D_4}\)
2 \(\mathrm{z}_1 \mathrm{D}_1^2=\mathrm{z}_2 \mathrm{D}_2^2=\mathrm{z}_3 \mathrm{D}_3^2=\mathrm{z}_4 \mathrm{D}_4^2\)
3 \(\mathrm{z}_1 \mathrm{D}_1=\mathrm{z}_2 \mathrm{D}_2=\mathrm{z}_3 \mathrm{D}_3=\mathrm{z}_4 \mathrm{D}_4\)
4 \(\frac{\mathrm{z}_1}{\mathrm{D}_1}=\frac{\mathrm{z}_2}{\mathrm{D}_2}=\frac{\mathrm{z}_3}{\mathrm{D}_3}=\frac{\mathrm{z}_4}{\mathrm{D}_4}\)
WAVE OPTICS

283123 Waves from two coherent sources of light having intensity ratio \(I_1: I_2\) equal to ' \(x\) ' interfere. Then in the interference pattern obtained on the screen, the value of \(\left(I_{\text {max }}-I_{\text {min }}\right) /\left(I_{\text {max }}+I_{\text {min }}\right)\) is

1 \(\sqrt{\mathrm{x}} / \mathrm{x}-1\)
2 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
3 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
4 \(2 \sqrt{\mathrm{x}} / \mathrm{x}+1\)
WAVE OPTICS

283124 In biprism experiment, the fringe width is 0.4 \(\mathrm{mm}\). What is the distance between \(4^{\text {th }}\) dark band and \(6^{\text {th }}\) bright band on the same side?

1 \(0.75 \mathrm{~mm}\)
2 \(0.5 \mathrm{~mm}\)
3 \(1 \mathrm{~mm}\)
4 \(1.5 \mathrm{~mm}\)
WAVE OPTICS

283125 The ratio if intensities of two wave producing interference is \(9: 4\), then the ratio of the resultant maximum and minimum intensities will be \(\left(\cos \frac{\pi}{3}=\frac{1}{2}\right)\)

1 \(25: 1\)
2 \(5: 1\)
3 \(9: 4\)
4 4 :
WAVE OPTICS

283120 In Young's double slit experiment, the ration of the intensities of the dark and bright fringes is 16:36. The ratio of the amplitudes of the two light waves is

1 \(3: 2\)
2 \(36: 16\)
3 \(5: 1\)
4 \(2: 1\)
WAVE OPTICS

283122 In a biprism experiment, monochromatic light of wavelength \((\lambda)\) is used. The distance between two coherent sources is kept constant. If the distance between slit and eyepiece(D) is varied as \(D_1, D_2, D_3\) and \(D_4\), the corresponding measured fringe widths are \(z_1, z_2, z_3\) and \(z_4\) then

1 \(z_1 \sqrt{D_1}=z_2 \sqrt{D_2}=z_3 \sqrt{D_3}=z_4 \sqrt{D_4}\)
2 \(\mathrm{z}_1 \mathrm{D}_1^2=\mathrm{z}_2 \mathrm{D}_2^2=\mathrm{z}_3 \mathrm{D}_3^2=\mathrm{z}_4 \mathrm{D}_4^2\)
3 \(\mathrm{z}_1 \mathrm{D}_1=\mathrm{z}_2 \mathrm{D}_2=\mathrm{z}_3 \mathrm{D}_3=\mathrm{z}_4 \mathrm{D}_4\)
4 \(\frac{\mathrm{z}_1}{\mathrm{D}_1}=\frac{\mathrm{z}_2}{\mathrm{D}_2}=\frac{\mathrm{z}_3}{\mathrm{D}_3}=\frac{\mathrm{z}_4}{\mathrm{D}_4}\)
WAVE OPTICS

283123 Waves from two coherent sources of light having intensity ratio \(I_1: I_2\) equal to ' \(x\) ' interfere. Then in the interference pattern obtained on the screen, the value of \(\left(I_{\text {max }}-I_{\text {min }}\right) /\left(I_{\text {max }}+I_{\text {min }}\right)\) is

1 \(\sqrt{\mathrm{x}} / \mathrm{x}-1\)
2 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
3 \(2 \sqrt{\mathrm{x}} / \mathrm{x}-1\)
4 \(2 \sqrt{\mathrm{x}} / \mathrm{x}+1\)
WAVE OPTICS

283124 In biprism experiment, the fringe width is 0.4 \(\mathrm{mm}\). What is the distance between \(4^{\text {th }}\) dark band and \(6^{\text {th }}\) bright band on the same side?

1 \(0.75 \mathrm{~mm}\)
2 \(0.5 \mathrm{~mm}\)
3 \(1 \mathrm{~mm}\)
4 \(1.5 \mathrm{~mm}\)
WAVE OPTICS

283125 The ratio if intensities of two wave producing interference is \(9: 4\), then the ratio of the resultant maximum and minimum intensities will be \(\left(\cos \frac{\pi}{3}=\frac{1}{2}\right)\)

1 \(25: 1\)
2 \(5: 1\)
3 \(9: 4\)
4 4 :