Wave Nature of Light, wave front
WAVE OPTICS

283060 The phase difference between the following two waves \(y_2\) and \(y_1\) is
\(\mathrm{y}_1=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}) ; \mathrm{y}_2=\mathrm{b} \cos \left(\omega \mathrm{t}-\mathrm{kx}+\frac{\pi}{3}\right)\)

1 \(\frac{\pi}{6}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\pi\)
WAVE OPTICS

283065 What is the wavelength of light of frequency \(5 \times 10^{14} \mathrm{~Hz}\) in glass of refractive index 1.5? velocity of light of air \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)

1 \(3600 \AA\)
2 \(4500 \AA\)
3 \(4000 \AA\)
4 \(5000 \AA\)
WAVE OPTICS

283070 A light wave has a frequency of \(4 \times \mathbf{1 0}^{14} \mathrm{~Hz}\) and a wavelength of \(5 \times 10^{-7} \mathrm{~m}\) in a medium. The refractive index of the medium is

1 1.5
2 1.33
3 1.0
4 0.66
WAVE OPTICS

283079 For a colour of light the wavelength for air is \(6000 \AA\) and water is \(4500 \AA\). Then the speed of light in water will be

1 \(5 \times 10^{14} \mathrm{~m} / \mathrm{s}\)
2 \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\)
3 \(4.0 \times 10^8 \mathrm{~m} / \mathrm{s}\)
4 zero
WAVE OPTICS

283081 A galaxy moves with respect to the earth so that sodium line of \(589.0 \mathrm{~nm}\) is observed at \(589.6 \mathrm{~nm}\). The speed of the galaxy is

1 \(300 \mathrm{~km} \mathrm{~s}^{-1}\)
2 \(306 \mathrm{~km} \mathrm{~s}^{-1}\)
3 \(400 \mathrm{~km} \mathrm{~s}^{-1}\)
4 \(406 \mathrm{~km} \mathrm{~s}^{-1}\)
WAVE OPTICS

283060 The phase difference between the following two waves \(y_2\) and \(y_1\) is
\(\mathrm{y}_1=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}) ; \mathrm{y}_2=\mathrm{b} \cos \left(\omega \mathrm{t}-\mathrm{kx}+\frac{\pi}{3}\right)\)

1 \(\frac{\pi}{6}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\pi\)
WAVE OPTICS

283065 What is the wavelength of light of frequency \(5 \times 10^{14} \mathrm{~Hz}\) in glass of refractive index 1.5? velocity of light of air \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)

1 \(3600 \AA\)
2 \(4500 \AA\)
3 \(4000 \AA\)
4 \(5000 \AA\)
WAVE OPTICS

283070 A light wave has a frequency of \(4 \times \mathbf{1 0}^{14} \mathrm{~Hz}\) and a wavelength of \(5 \times 10^{-7} \mathrm{~m}\) in a medium. The refractive index of the medium is

1 1.5
2 1.33
3 1.0
4 0.66
WAVE OPTICS

283079 For a colour of light the wavelength for air is \(6000 \AA\) and water is \(4500 \AA\). Then the speed of light in water will be

1 \(5 \times 10^{14} \mathrm{~m} / \mathrm{s}\)
2 \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\)
3 \(4.0 \times 10^8 \mathrm{~m} / \mathrm{s}\)
4 zero
WAVE OPTICS

283081 A galaxy moves with respect to the earth so that sodium line of \(589.0 \mathrm{~nm}\) is observed at \(589.6 \mathrm{~nm}\). The speed of the galaxy is

1 \(300 \mathrm{~km} \mathrm{~s}^{-1}\)
2 \(306 \mathrm{~km} \mathrm{~s}^{-1}\)
3 \(400 \mathrm{~km} \mathrm{~s}^{-1}\)
4 \(406 \mathrm{~km} \mathrm{~s}^{-1}\)
WAVE OPTICS

283060 The phase difference between the following two waves \(y_2\) and \(y_1\) is
\(\mathrm{y}_1=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}) ; \mathrm{y}_2=\mathrm{b} \cos \left(\omega \mathrm{t}-\mathrm{kx}+\frac{\pi}{3}\right)\)

1 \(\frac{\pi}{6}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\pi\)
WAVE OPTICS

283065 What is the wavelength of light of frequency \(5 \times 10^{14} \mathrm{~Hz}\) in glass of refractive index 1.5? velocity of light of air \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)

1 \(3600 \AA\)
2 \(4500 \AA\)
3 \(4000 \AA\)
4 \(5000 \AA\)
WAVE OPTICS

283070 A light wave has a frequency of \(4 \times \mathbf{1 0}^{14} \mathrm{~Hz}\) and a wavelength of \(5 \times 10^{-7} \mathrm{~m}\) in a medium. The refractive index of the medium is

1 1.5
2 1.33
3 1.0
4 0.66
WAVE OPTICS

283079 For a colour of light the wavelength for air is \(6000 \AA\) and water is \(4500 \AA\). Then the speed of light in water will be

1 \(5 \times 10^{14} \mathrm{~m} / \mathrm{s}\)
2 \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\)
3 \(4.0 \times 10^8 \mathrm{~m} / \mathrm{s}\)
4 zero
WAVE OPTICS

283081 A galaxy moves with respect to the earth so that sodium line of \(589.0 \mathrm{~nm}\) is observed at \(589.6 \mathrm{~nm}\). The speed of the galaxy is

1 \(300 \mathrm{~km} \mathrm{~s}^{-1}\)
2 \(306 \mathrm{~km} \mathrm{~s}^{-1}\)
3 \(400 \mathrm{~km} \mathrm{~s}^{-1}\)
4 \(406 \mathrm{~km} \mathrm{~s}^{-1}\)
WAVE OPTICS

283060 The phase difference between the following two waves \(y_2\) and \(y_1\) is
\(\mathrm{y}_1=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}) ; \mathrm{y}_2=\mathrm{b} \cos \left(\omega \mathrm{t}-\mathrm{kx}+\frac{\pi}{3}\right)\)

1 \(\frac{\pi}{6}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\pi\)
WAVE OPTICS

283065 What is the wavelength of light of frequency \(5 \times 10^{14} \mathrm{~Hz}\) in glass of refractive index 1.5? velocity of light of air \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)

1 \(3600 \AA\)
2 \(4500 \AA\)
3 \(4000 \AA\)
4 \(5000 \AA\)
WAVE OPTICS

283070 A light wave has a frequency of \(4 \times \mathbf{1 0}^{14} \mathrm{~Hz}\) and a wavelength of \(5 \times 10^{-7} \mathrm{~m}\) in a medium. The refractive index of the medium is

1 1.5
2 1.33
3 1.0
4 0.66
WAVE OPTICS

283079 For a colour of light the wavelength for air is \(6000 \AA\) and water is \(4500 \AA\). Then the speed of light in water will be

1 \(5 \times 10^{14} \mathrm{~m} / \mathrm{s}\)
2 \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\)
3 \(4.0 \times 10^8 \mathrm{~m} / \mathrm{s}\)
4 zero
WAVE OPTICS

283081 A galaxy moves with respect to the earth so that sodium line of \(589.0 \mathrm{~nm}\) is observed at \(589.6 \mathrm{~nm}\). The speed of the galaxy is

1 \(300 \mathrm{~km} \mathrm{~s}^{-1}\)
2 \(306 \mathrm{~km} \mathrm{~s}^{-1}\)
3 \(400 \mathrm{~km} \mathrm{~s}^{-1}\)
4 \(406 \mathrm{~km} \mathrm{~s}^{-1}\)
WAVE OPTICS

283060 The phase difference between the following two waves \(y_2\) and \(y_1\) is
\(\mathrm{y}_1=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx}) ; \mathrm{y}_2=\mathrm{b} \cos \left(\omega \mathrm{t}-\mathrm{kx}+\frac{\pi}{3}\right)\)

1 \(\frac{\pi}{6}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\pi\)
WAVE OPTICS

283065 What is the wavelength of light of frequency \(5 \times 10^{14} \mathrm{~Hz}\) in glass of refractive index 1.5? velocity of light of air \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)

1 \(3600 \AA\)
2 \(4500 \AA\)
3 \(4000 \AA\)
4 \(5000 \AA\)
WAVE OPTICS

283070 A light wave has a frequency of \(4 \times \mathbf{1 0}^{14} \mathrm{~Hz}\) and a wavelength of \(5 \times 10^{-7} \mathrm{~m}\) in a medium. The refractive index of the medium is

1 1.5
2 1.33
3 1.0
4 0.66
WAVE OPTICS

283079 For a colour of light the wavelength for air is \(6000 \AA\) and water is \(4500 \AA\). Then the speed of light in water will be

1 \(5 \times 10^{14} \mathrm{~m} / \mathrm{s}\)
2 \(2.25 \times 10^8 \mathrm{~m} / \mathrm{s}\)
3 \(4.0 \times 10^8 \mathrm{~m} / \mathrm{s}\)
4 zero
WAVE OPTICS

283081 A galaxy moves with respect to the earth so that sodium line of \(589.0 \mathrm{~nm}\) is observed at \(589.6 \mathrm{~nm}\). The speed of the galaxy is

1 \(300 \mathrm{~km} \mathrm{~s}^{-1}\)
2 \(306 \mathrm{~km} \mathrm{~s}^{-1}\)
3 \(400 \mathrm{~km} \mathrm{~s}^{-1}\)
4 \(406 \mathrm{~km} \mathrm{~s}^{-1}\)