Prism, Refraction through Prism
Ray Optics

282681 A prism of angle of prism \(60^{\circ}\) has angle of minimum deviation \(40^{\circ}\). The angle of incidence in this position is

1 \(30^{\circ}\)
2 \(50^{\circ}\)
3 \(60^{\circ}\)
4 \(100^{\circ}\)
Ray Optics

282682 A prism having refractive index \(\sqrt{2}\) and refracting angle \(30^{\circ}\) has one of the refracting surfaces silvered. The beam of light incident on the other refracting surface will retrace its path, if angle of incidence is \(\left[\sin \frac{\pi}{6}=0.5\right]\)

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)
3 \(\sin ^{-1}\left(\frac{1}{2}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
Ray Optics

282683 A thin prism \(P_1\) with angle \(4^{\circ}\) and made from glass of refractive index 1.54 is combined with another thin prism \(P_2\) made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of prism for \(P_2\) is

1 \(5.33^0\)
2 \(3^0\)
3 \(2.6^0\)
4 \(4^0\)
Ray Optics

282684 When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray \(\left[\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}\right]\)

1 undergoes total internal reflection at second refracting surface.
2 just grazes the second refracting surface.
3 is deviated by \(30^{\circ}\)
4 is deviated by \(20^{\circ}\)
Ray Optics

282685 The angle of minimum deviation produced by a thin glass prism in air is ' \(\delta\) '. If that prism is immersed in water, the angle of minimum deviation will be \(\left({ }_a \mu_g=\right.\) refractive index of glass w.r.t, air, \({ }_a \mu_w=\) refractive index of water w.r.t. air)

1 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-{ }_{\mathrm{a}} \mu_{\mathrm{w}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}+1\right)}\right]\)
2 \(\delta\left[\frac{\left({ }_a \mu_g-{ }_a \mu_w\right)}{{ }_a \mu_w\left({ }_a \mu_g-1\right)}\right]\)
3 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-1\right)}\right]\)
4 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}} \times{ }_{\mathrm{a}} \mu_{\mathrm{g}}}\right]\)
Ray Optics

282681 A prism of angle of prism \(60^{\circ}\) has angle of minimum deviation \(40^{\circ}\). The angle of incidence in this position is

1 \(30^{\circ}\)
2 \(50^{\circ}\)
3 \(60^{\circ}\)
4 \(100^{\circ}\)
Ray Optics

282682 A prism having refractive index \(\sqrt{2}\) and refracting angle \(30^{\circ}\) has one of the refracting surfaces silvered. The beam of light incident on the other refracting surface will retrace its path, if angle of incidence is \(\left[\sin \frac{\pi}{6}=0.5\right]\)

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)
3 \(\sin ^{-1}\left(\frac{1}{2}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
Ray Optics

282683 A thin prism \(P_1\) with angle \(4^{\circ}\) and made from glass of refractive index 1.54 is combined with another thin prism \(P_2\) made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of prism for \(P_2\) is

1 \(5.33^0\)
2 \(3^0\)
3 \(2.6^0\)
4 \(4^0\)
Ray Optics

282684 When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray \(\left[\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}\right]\)

1 undergoes total internal reflection at second refracting surface.
2 just grazes the second refracting surface.
3 is deviated by \(30^{\circ}\)
4 is deviated by \(20^{\circ}\)
Ray Optics

282685 The angle of minimum deviation produced by a thin glass prism in air is ' \(\delta\) '. If that prism is immersed in water, the angle of minimum deviation will be \(\left({ }_a \mu_g=\right.\) refractive index of glass w.r.t, air, \({ }_a \mu_w=\) refractive index of water w.r.t. air)

1 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-{ }_{\mathrm{a}} \mu_{\mathrm{w}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}+1\right)}\right]\)
2 \(\delta\left[\frac{\left({ }_a \mu_g-{ }_a \mu_w\right)}{{ }_a \mu_w\left({ }_a \mu_g-1\right)}\right]\)
3 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-1\right)}\right]\)
4 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}} \times{ }_{\mathrm{a}} \mu_{\mathrm{g}}}\right]\)
Ray Optics

282681 A prism of angle of prism \(60^{\circ}\) has angle of minimum deviation \(40^{\circ}\). The angle of incidence in this position is

1 \(30^{\circ}\)
2 \(50^{\circ}\)
3 \(60^{\circ}\)
4 \(100^{\circ}\)
Ray Optics

282682 A prism having refractive index \(\sqrt{2}\) and refracting angle \(30^{\circ}\) has one of the refracting surfaces silvered. The beam of light incident on the other refracting surface will retrace its path, if angle of incidence is \(\left[\sin \frac{\pi}{6}=0.5\right]\)

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)
3 \(\sin ^{-1}\left(\frac{1}{2}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
Ray Optics

282683 A thin prism \(P_1\) with angle \(4^{\circ}\) and made from glass of refractive index 1.54 is combined with another thin prism \(P_2\) made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of prism for \(P_2\) is

1 \(5.33^0\)
2 \(3^0\)
3 \(2.6^0\)
4 \(4^0\)
Ray Optics

282684 When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray \(\left[\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}\right]\)

1 undergoes total internal reflection at second refracting surface.
2 just grazes the second refracting surface.
3 is deviated by \(30^{\circ}\)
4 is deviated by \(20^{\circ}\)
Ray Optics

282685 The angle of minimum deviation produced by a thin glass prism in air is ' \(\delta\) '. If that prism is immersed in water, the angle of minimum deviation will be \(\left({ }_a \mu_g=\right.\) refractive index of glass w.r.t, air, \({ }_a \mu_w=\) refractive index of water w.r.t. air)

1 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-{ }_{\mathrm{a}} \mu_{\mathrm{w}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}+1\right)}\right]\)
2 \(\delta\left[\frac{\left({ }_a \mu_g-{ }_a \mu_w\right)}{{ }_a \mu_w\left({ }_a \mu_g-1\right)}\right]\)
3 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-1\right)}\right]\)
4 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}} \times{ }_{\mathrm{a}} \mu_{\mathrm{g}}}\right]\)
Ray Optics

282681 A prism of angle of prism \(60^{\circ}\) has angle of minimum deviation \(40^{\circ}\). The angle of incidence in this position is

1 \(30^{\circ}\)
2 \(50^{\circ}\)
3 \(60^{\circ}\)
4 \(100^{\circ}\)
Ray Optics

282682 A prism having refractive index \(\sqrt{2}\) and refracting angle \(30^{\circ}\) has one of the refracting surfaces silvered. The beam of light incident on the other refracting surface will retrace its path, if angle of incidence is \(\left[\sin \frac{\pi}{6}=0.5\right]\)

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)
3 \(\sin ^{-1}\left(\frac{1}{2}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
Ray Optics

282683 A thin prism \(P_1\) with angle \(4^{\circ}\) and made from glass of refractive index 1.54 is combined with another thin prism \(P_2\) made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of prism for \(P_2\) is

1 \(5.33^0\)
2 \(3^0\)
3 \(2.6^0\)
4 \(4^0\)
Ray Optics

282684 When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray \(\left[\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}\right]\)

1 undergoes total internal reflection at second refracting surface.
2 just grazes the second refracting surface.
3 is deviated by \(30^{\circ}\)
4 is deviated by \(20^{\circ}\)
Ray Optics

282685 The angle of minimum deviation produced by a thin glass prism in air is ' \(\delta\) '. If that prism is immersed in water, the angle of minimum deviation will be \(\left({ }_a \mu_g=\right.\) refractive index of glass w.r.t, air, \({ }_a \mu_w=\) refractive index of water w.r.t. air)

1 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-{ }_{\mathrm{a}} \mu_{\mathrm{w}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}+1\right)}\right]\)
2 \(\delta\left[\frac{\left({ }_a \mu_g-{ }_a \mu_w\right)}{{ }_a \mu_w\left({ }_a \mu_g-1\right)}\right]\)
3 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-1\right)}\right]\)
4 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}} \times{ }_{\mathrm{a}} \mu_{\mathrm{g}}}\right]\)
Ray Optics

282681 A prism of angle of prism \(60^{\circ}\) has angle of minimum deviation \(40^{\circ}\). The angle of incidence in this position is

1 \(30^{\circ}\)
2 \(50^{\circ}\)
3 \(60^{\circ}\)
4 \(100^{\circ}\)
Ray Optics

282682 A prism having refractive index \(\sqrt{2}\) and refracting angle \(30^{\circ}\) has one of the refracting surfaces silvered. The beam of light incident on the other refracting surface will retrace its path, if angle of incidence is \(\left[\sin \frac{\pi}{6}=0.5\right]\)

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\)
3 \(\sin ^{-1}\left(\frac{1}{2}\right)\)
4 \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)
Ray Optics

282683 A thin prism \(P_1\) with angle \(4^{\circ}\) and made from glass of refractive index 1.54 is combined with another thin prism \(P_2\) made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of prism for \(P_2\) is

1 \(5.33^0\)
2 \(3^0\)
3 \(2.6^0\)
4 \(4^0\)
Ray Optics

282684 When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray \(\left[\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}\right]\)

1 undergoes total internal reflection at second refracting surface.
2 just grazes the second refracting surface.
3 is deviated by \(30^{\circ}\)
4 is deviated by \(20^{\circ}\)
Ray Optics

282685 The angle of minimum deviation produced by a thin glass prism in air is ' \(\delta\) '. If that prism is immersed in water, the angle of minimum deviation will be \(\left({ }_a \mu_g=\right.\) refractive index of glass w.r.t, air, \({ }_a \mu_w=\) refractive index of water w.r.t. air)

1 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-{ }_{\mathrm{a}} \mu_{\mathrm{w}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}+1\right)}\right]\)
2 \(\delta\left[\frac{\left({ }_a \mu_g-{ }_a \mu_w\right)}{{ }_a \mu_w\left({ }_a \mu_g-1\right)}\right]\)
3 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}}\left({ }_{\mathrm{a}} \mu_{\mathrm{g}}-1\right)}\right]\)
4 \(\delta\left[\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{w}}-{ }_{\mathrm{a}} \mu_{\mathrm{g}}\right)}{{ }_{\mathrm{a}} \mu_{\mathrm{w}} \times{ }_{\mathrm{a}} \mu_{\mathrm{g}}}\right]\)