Refraction through a Glass Slab, and Total Internal Reflection
Ray Optics

282284 What is the lateral displacement of a ray of light passing through a parallel plate of glass of thickness \(t\) with angles of incidence and refraction respectively as \(\alpha\) and \(\beta\) ?

1 \(t \sec (\alpha / \beta)\)
2 \(t \sin (\alpha-\beta) \sec \beta\)
3 \(t \sin (\alpha-\beta)\)
4 \(t \cos (\alpha-\beta) \operatorname{cosec} \beta\)
Ray Optics

282285 The speed of light in media \(M_1\) and \(M_2\) are \(1.5 \times 10^8 \mathrm{~ms}^{-1}\) and \(2 \times 10^8 \mathrm{~ms}^{-1}\) respectively. A ray travels from medium \(M_1\) to the medium \(M_2\) with an angle of incidence \(\theta\). The ray suffers total internal reflection. Then the value of the angle of incidence \(\theta\) is :

1 \(>\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(<\sin ^{-1}\left(\frac{3}{4}\right)\)
3 \(=\sin ^{-1}\left(\frac{3}{4}\right)\)
4 \(\leq \sin ^{-1}\left(\frac{3}{4}\right)\)
Ray Optics

282286 A point source of light is kept below the surface of water \(\left(n_w=4 / 3\right)\) at a depth of \(\sqrt{7} \mathrm{~m}\). The radius of the circular bright patch of light noticed on the surface of water is :

1 \(\sqrt{7} \mathrm{~m}\)
2 \(\frac{3}{\sqrt{7}} \mathrm{~m}\)
3 \(3 \mathrm{~m}\)
4 \(\frac{\sqrt{7}}{3} \mathrm{~m}\)
Ray Optics

282287 The critical angle of a certain medium is \(\sin ^{-1}\) \(\left(\frac{3}{5}\right)\). The polarizing angle of the medium is :

1 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
2 \(\tan ^{-1}\left(\frac{5}{3}\right)\)
3 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
4 \(\tan ^{-1}\left(\frac{4}{3}\right)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ray Optics

282284 What is the lateral displacement of a ray of light passing through a parallel plate of glass of thickness \(t\) with angles of incidence and refraction respectively as \(\alpha\) and \(\beta\) ?

1 \(t \sec (\alpha / \beta)\)
2 \(t \sin (\alpha-\beta) \sec \beta\)
3 \(t \sin (\alpha-\beta)\)
4 \(t \cos (\alpha-\beta) \operatorname{cosec} \beta\)
Ray Optics

282285 The speed of light in media \(M_1\) and \(M_2\) are \(1.5 \times 10^8 \mathrm{~ms}^{-1}\) and \(2 \times 10^8 \mathrm{~ms}^{-1}\) respectively. A ray travels from medium \(M_1\) to the medium \(M_2\) with an angle of incidence \(\theta\). The ray suffers total internal reflection. Then the value of the angle of incidence \(\theta\) is :

1 \(>\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(<\sin ^{-1}\left(\frac{3}{4}\right)\)
3 \(=\sin ^{-1}\left(\frac{3}{4}\right)\)
4 \(\leq \sin ^{-1}\left(\frac{3}{4}\right)\)
Ray Optics

282286 A point source of light is kept below the surface of water \(\left(n_w=4 / 3\right)\) at a depth of \(\sqrt{7} \mathrm{~m}\). The radius of the circular bright patch of light noticed on the surface of water is :

1 \(\sqrt{7} \mathrm{~m}\)
2 \(\frac{3}{\sqrt{7}} \mathrm{~m}\)
3 \(3 \mathrm{~m}\)
4 \(\frac{\sqrt{7}}{3} \mathrm{~m}\)
Ray Optics

282287 The critical angle of a certain medium is \(\sin ^{-1}\) \(\left(\frac{3}{5}\right)\). The polarizing angle of the medium is :

1 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
2 \(\tan ^{-1}\left(\frac{5}{3}\right)\)
3 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
4 \(\tan ^{-1}\left(\frac{4}{3}\right)\)
Ray Optics

282284 What is the lateral displacement of a ray of light passing through a parallel plate of glass of thickness \(t\) with angles of incidence and refraction respectively as \(\alpha\) and \(\beta\) ?

1 \(t \sec (\alpha / \beta)\)
2 \(t \sin (\alpha-\beta) \sec \beta\)
3 \(t \sin (\alpha-\beta)\)
4 \(t \cos (\alpha-\beta) \operatorname{cosec} \beta\)
Ray Optics

282285 The speed of light in media \(M_1\) and \(M_2\) are \(1.5 \times 10^8 \mathrm{~ms}^{-1}\) and \(2 \times 10^8 \mathrm{~ms}^{-1}\) respectively. A ray travels from medium \(M_1\) to the medium \(M_2\) with an angle of incidence \(\theta\). The ray suffers total internal reflection. Then the value of the angle of incidence \(\theta\) is :

1 \(>\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(<\sin ^{-1}\left(\frac{3}{4}\right)\)
3 \(=\sin ^{-1}\left(\frac{3}{4}\right)\)
4 \(\leq \sin ^{-1}\left(\frac{3}{4}\right)\)
Ray Optics

282286 A point source of light is kept below the surface of water \(\left(n_w=4 / 3\right)\) at a depth of \(\sqrt{7} \mathrm{~m}\). The radius of the circular bright patch of light noticed on the surface of water is :

1 \(\sqrt{7} \mathrm{~m}\)
2 \(\frac{3}{\sqrt{7}} \mathrm{~m}\)
3 \(3 \mathrm{~m}\)
4 \(\frac{\sqrt{7}}{3} \mathrm{~m}\)
Ray Optics

282287 The critical angle of a certain medium is \(\sin ^{-1}\) \(\left(\frac{3}{5}\right)\). The polarizing angle of the medium is :

1 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
2 \(\tan ^{-1}\left(\frac{5}{3}\right)\)
3 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
4 \(\tan ^{-1}\left(\frac{4}{3}\right)\)
Ray Optics

282284 What is the lateral displacement of a ray of light passing through a parallel plate of glass of thickness \(t\) with angles of incidence and refraction respectively as \(\alpha\) and \(\beta\) ?

1 \(t \sec (\alpha / \beta)\)
2 \(t \sin (\alpha-\beta) \sec \beta\)
3 \(t \sin (\alpha-\beta)\)
4 \(t \cos (\alpha-\beta) \operatorname{cosec} \beta\)
Ray Optics

282285 The speed of light in media \(M_1\) and \(M_2\) are \(1.5 \times 10^8 \mathrm{~ms}^{-1}\) and \(2 \times 10^8 \mathrm{~ms}^{-1}\) respectively. A ray travels from medium \(M_1\) to the medium \(M_2\) with an angle of incidence \(\theta\). The ray suffers total internal reflection. Then the value of the angle of incidence \(\theta\) is :

1 \(>\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(<\sin ^{-1}\left(\frac{3}{4}\right)\)
3 \(=\sin ^{-1}\left(\frac{3}{4}\right)\)
4 \(\leq \sin ^{-1}\left(\frac{3}{4}\right)\)
Ray Optics

282286 A point source of light is kept below the surface of water \(\left(n_w=4 / 3\right)\) at a depth of \(\sqrt{7} \mathrm{~m}\). The radius of the circular bright patch of light noticed on the surface of water is :

1 \(\sqrt{7} \mathrm{~m}\)
2 \(\frac{3}{\sqrt{7}} \mathrm{~m}\)
3 \(3 \mathrm{~m}\)
4 \(\frac{\sqrt{7}}{3} \mathrm{~m}\)
Ray Optics

282287 The critical angle of a certain medium is \(\sin ^{-1}\) \(\left(\frac{3}{5}\right)\). The polarizing angle of the medium is :

1 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
2 \(\tan ^{-1}\left(\frac{5}{3}\right)\)
3 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
4 \(\tan ^{-1}\left(\frac{4}{3}\right)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here